Volume-1 Issue-2

  • Version
  • Download 0
  • File Size 4.00 KB
  • Create Date August 28, 2017

 Download Abstract Book

S. No

Volume-1 Issue-2, December 2014, ISSN: 2394-367X (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd. 

Page No.



S. Tharmar

Paper Title:

Fuzzy i.f-sets and fuzzy i.f-sets

Abstract:  Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and E-infinity space time theory. In this paper, we define f-sets and f-sets in fuzzy ideal topological spaces and discuss their properties. Also define I.f-sets and I.f-sets in fuzzy ideal topological spaces and discuss their properties.

El-Naschie, E-infinity, topological.


1.       C. L. Chang, Fuzzy topological spaces, J Math Anal Appl 1968;24:182-90.
2.       J. Dontchev, M. Ganster, D. Rose, Ideal resolvability, Topol Appl 1998(90):1-16.
3.       MS. El-Naschie, On the uncertainty of constrain geometry and the two-slit experiment, Chaos, Solitons & Fractals 1998;9(3):517-29.
4.       MS. El-Naschie, Elementary prerequisites for Einfinity (recommended background readings in nonlinear dynamics, geometry and topology), Chaos, Solitons & Fractals 2006;30(3):579-605.
5.       MS. El-Naschie, Advanced prerequisite for Einfinity theory, Chaos, Solitons & Fractals 2006;30:636-41.
6.       MS. El-Naschie, Topics in the mathematical physics of E-infinity theory, Chaos, Solitons & Fractals 2006;30:656-63.
7.       D. Jankovic, TR. Hamlett, New topologies from old via ideals, Amer Math Monthly 1990;97(4):295310.
8.       RA. Mahmoud, Fuzzy ideals, fuzzy local functions and fuzzy topology, J Fuzzy Math Los Angeles 1997;5(1):165-72.
9.       D. Sarkar, Fuzzy ideal theory, fuzzy local function and generated fuzzy topology, Fuzzy Sets Syst 1997;87:117-23.
10.     L. A. Zadeh, Fuzzy sets Information and Control 1965;8:338-53.






Pramod Kumar Singh, Kamalika Banerjee, Sangeeta Singla

Paper Title:

Synthesis and Spectral Studies on Transition Metal Complexes of Some Aroyl Hydrazone Ligands

Abstract: Two new aroyl hydrazones, N-2-hydroxybenzaldehyde-N^'-isonicotinoylhydrazones (HBIH=H2L1) and N-2-hydroxy-4-methylbenzaldehyde-N^'-isonicotinoyl hydrazone (HMIH= H2L2) and its Co (II), Ni (II), and Cu (II) complexes have been prepared. The ligands are characterized by elemental analysis, infrared, electronic and NMR spectral studies, while the structure of complexes has been investigated by using elemental analysis, magnetic susceptibility, molar conductance, thermal and spectral (IR, UV, EPR) measurements. IR and NMR spectra indicate that the ligand behave as dibasic tridentate ligand and coordinates to the metal ion through ketonic oxygen, azomethine nitrogen, and phenolic oxygen atoms by double deprotonation of ligand, both the phenolic and enolic protons. The magnetic and spectral data indicate octahedral geometry for Co (II) and Ni (II) complexes while the square planer geometry for Cu (II) complex.

aroyl hydrazones, isonicotinoyl hydrazone, ketonic oxygen, metal complexes.


1.   I.G. Ribeiro, K.C.M. da Silva, S.C. Parrini,  A.L.P. de Miranda, C.A.M. Fraga, E.J. Barreiro, Eur. J. Med. Chem.,  33, 1998,  pp. 225-255.
2.   D.R. Richardson, P.V. Bernhardt, J. Biol. Inorg. Chem., 4, 1999, pp. 226-273.
3.  S. G. Kuçukguzel, S. Rollas, I. Kuçukguzel, M. Kiraz, Eur. J. Med. Chem., 34, 1999, pp. 1093-1100.
4.  U. O.  Ozmen, G. Olgun,   Spectrochim. Acta A 70, 2008, 641-645.
5.  P. G. Avaji, CH. V. Kumar, S. A. Patil, K. N. Shivananda, C. Nagarajun, Eur. J. Med. Chem., 44, 2009, 3552-3559.
6.   L. M. Lima, F. S. Frattani, J. L. dos Santos, H. C. Castro, C. A. M. Fraga, R. B. Zingali, Eur. J. Med. Chem., 43, 2008, 348-356.
7.   G. Visbal, E. Marchán, A. Maldonado, Z. Simoni, M. Navarro,  J. Inorg. Biochem.,  102, 2008, 547-554.
8.    C. Roullier, C. K. Marylene, W. Pierr Van De, L. L. D. Francoise, B. Joel, Bioorg. Med. Chem. Lett., 20, 2010, 4582-4586.
9.   J. K. Amartey, I. Al-Jammaz, B. Al-Otaibi,  B. Esguerra, Nucl.  Med. Bio., 29, 2002, 817-823.
10.  B. S. Garg, P. K. Singh, J. Sharma, Synth. React. Inorg. Met. Org. Chem., 30, 2000, 803-813.
11.  P. K. Singh, D.N. Kumar,  Spectrochim. Acta., Part A, 64, 2006, 853-858.
12. W.J. Geary, Coord. Chem. Rev., 7, 1971, 81-85
13.  K. K. Nakanishi, Infrared Absorption Spectroscopy, Holden-Day Inc., Nankodo Co Ltd, San Francisco, Tokyo, 1962. 
14.  A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, 1984.
15.  H. B. Gray, C. J. Ballhausen, A. Molecular Orbital Theory , J.  Am Chem Soc, 85, 1963, 260-265.
16.  F. A. Cotton, and G. Wilkinson, Advanced Inorganic Chemistry, A comprehensive Text, 3rd Ed, Wiley-Inter Science, NewYork, 1972.
17.   B.N. Figgis, J. Lewis, Modern Coordination Chemistry, Inter Science, New York, 1967. 
18.    B.N. Figgis, Introduction to ligand fields, Wiley Eastern Ltd, India, 1976.
19.     F.K. Khanbuhl,  J. Chem.  Phys. 33, 1960, 1074.                               
20.     H. C. Allen Jr., G. F. Kokoszka, R.G. Inskeep, J. Am. Chem. Soc., 86, 1964, 1023.
21.     F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, A comprehensive Text, 4th ed., John Wiley and Sons, New York,1986.  
22.     I. M. Proctor, P. S. Hathaway, P. Nicholls,  J. Chem. Soc. A., 1678, 1968.
23.     B. J. Hathaway, D.E. Billing, Coord.  Chem. Rev.  5, 1970, 143.
24.     M. J. Bew, B. J. Hathaway, R. R. Faraday, J. Chem. Soc. Dalton. Trans., 1229, 1972.
25.     D. Kivelson, R. Neiman, J. Chem. Phys., 35, 1961, 149.
26.     G. F. Pryce, J. Phys. Chem. 79, 1966, 549.
27.     W. W. Wendlandt, Thermal Method of Analysis, Interscience, NewYork, 1964.