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The (a, b) — Status Indices of Central Graphs of

Some Standard Graph

Sridhara K.R, Mallikarjun Basanna K attimani

Abstract: The sum of shortest distance between a vertex u from
all other vertices of a graph G is called the index of the vertex u
and is denoted by a(u). In this article, we have obtained,
the(a, b) — status index [3] of central graphs of some standard
graphs namely star graph, complete graph, cycle graph, wheel
graph and friendship graph. Using this new index, we have
computed 9 standard status indices of all these central graphs of
standard graphs.

Keywords. The (a,b) — status index, first and second status
indices, first and second status Gourava indices.

I. INTRODUCTION

Graoha here considered, are connected and simple with

no self-loops and no parallel edges. Vertex set is denoted by
V(G), edge setisdenoted by E(G) for agraph G. The Central
graph C(G) of a graph G is the graph obtained by
sub-dividing each edge of aG exactly once and joining al
non-adjacent vertices of G. The length of shortest path
between two vertices u and v, denoted by d (u, v) isdistance
between them. The sum of distances of a vertex u from all
other vertices of a graph is called status of the vertex u with
notation ¢ (u). Ramane et.al [4] introduced first and second
connectivity statusindices. V.R.Kulli et.al introduced [3] The
(a,b) — statusindex, as

{(e@)?® - (e()” + (e(w))*(6(v))*}

uveE(G)

For notations and definitions, we refer [1],[2]. In [3],
V.R.Kulli et a. have found the first status index S, (G),
second status index S, (G), product connectivity status index
PS(G), reciprocal product connectivity statusindex RPS(G),
the general second status index S3(G), The F, status index
F,5(G), the first status Gourava index SG0,(G), the second
status Gouravaindex SGO0,(G), the symmetric division status
index SDS(G) of wheel and friendship graphs. Here we have
obtained these indices for central graphs of star graph K ,,,
denoted by C(K;,), cycle graph C,, denoted by C(C,),
complete graph K,,, denoted by C(K,,), wheel graph W}, with
C(W,), and friendship graph F,,, denoted by C(F,).
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[I. MAINRESULTSS

Theorem 2.1. Forn = 2,
Saw (C(K1n)) = 2n{(3)2(4n = 2)° + (3n)° (4n — 2)%)

+ n(n — 1)(3n)2*t
Proof. By definition of central graph, and by computation,

wenotethat C(Ky,) has(2n + 1) verticesand “—— Fean edges.

The edge set E (C(Km)) can be divided into the following

two parts.
E = {uveE (C(Klln))/d(u) =n,dWw) = n} and
nn—1)
B, = fuveB(C(K,))) / ) =n.d(v) =]

Calculating status of every vertex of the graph, we find that
M (K, ) has 2 status edges aslisted in Table 1.

Table 1: Details of Status of verticesof C(Ky,,)

(o(w),6(v)) / uveE (c(KLn)) Total edges
(3n,4n —2) 2n
(3n,3n) @

Using the above table and definition, we get,

Saw (C(Kin)) = 2n{(3m)%(4n = 2)® + (3n)" (4n —
n(n -1

2)%}

——{Bn)*Bn)* + 3n)*(3n)*}
= 2n{(3n) (4n —2)° + 3n)b (4n — 2)%}
+n(n — 1)(3n)**?

Theorem 2.2. Forn = 2,

9n* + 4513 — 2n? — 8n
560, (C(Kyin)) = -

Proof. By definition of first Gouravaindex [3], we have

560, (C(kin)) = ). {0 + o) + o)

uveE(C(KLn))

Using table 1, we note that

3 IJB A
3"& %, SAC

\
s \°
”’Or |o\1°\“

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication (1IJBSAC)
© Copyright: All rights reserved.

.ijbsac.org

Exploring Innovation


https://www.openaccess.nl/en/open-publications
http://www.ijbsac.org/
mailto:sridharwi@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijbsac.H0476.048822&domain=www.ijbsac.org

The (a, b) — Status I ndices of Central Graphs of Some Standard Graph

SGO, (C(Kl_n)) = 2n{3n + (4n — 2) + 3n(4n — 2)}
nn—-1)
=
3 In* + 45n% — 2n? — 8n
B 2

{3n + 3n + 9n?}

Corollary 2.3.
1. Thefirst status index

S (C(Kin)) = 10 (C(Kin))

=3n®+11n%> —4n
2. The second status index

S, (C(Kyn)) = (51 (¢ (Kln)))

_9n* +39n° — 24n?
h 2
3. The product connectivity status index

P (C(Kyn)) = %(S-Tg-?l (c (Kl,n)))

_ 2n 4 n-1)
Vi12nZ — 6n 6
4. The reciprocal product connectivity status index

% (5%% (C(Km))>

= 2n4/12n2 —

RPS (C(Ky))

3n3 —3n

6n + >

5. The general second status index
SZ (C(Kln)) ( aa(C(Kln)))

_ 2a
2 4 nn —1)(3n)

= 2n(3n)*(4n — >

6. The F; status index
S (C(Kin)) = Sz0 (C(Kyn))
=9n* + 41n® — 32n? + 8n
7. The second status Gourava I ndex
SGO, (C(Kl,n)) = So1 (C(Kin))
= 27n° + 141n* — 132n° + 24n?

8.The symmetric division status index

sDS (C(Kin)) = S11 (€ (Kl.n))

_5 ( 3n +4n—2
M\ =2 T

> +n(n—1)
Theorem 2.4. Forn > 2
Sap(C(C) =2n(Bn - 1)*(5n — 7)°
+(Bn-1)°%Gn-7)%
+(n? —3n)(3n — 1)**?
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Proof. By definition of central graph, and by computation,
we note that C(C,) has 2n vertices and ”2% edges. The

edge set E(C(C,)) can be divided into the following two
parts.
E, = {uveE(C(Cn))/d(u) =n-1,dw) = 2} and

= {uveE(C(Cn))/d(u) =n-1,dw) =n-— 1}
Calculating status of each vertex of the graph, we find that
(¢(C,)) hasthe following two types of status edges:

Table 2: Details of status of verticesof C(C,,)

o(u),oc(v)) /uveE(C(C,) Total edges

( ) / uveE(C(C,)) g
(Bn-15n-7) 2n
GBn-13n-1) n? ; 3n

Using the above table and definition, we get,
Sap(C(C) = 2n(Bn—1*5n —7)°
+(Bn-1°%Gn-7)%

n?—3n
; ( .
+(Bn - 1)%*Bn-1)P)

Bn-1DGn-7)°+
"( (3n — 1)’ (5n — 7)@ )

+(n? —3n)(3n — 1)+

Theorem 2.5. For n > 3,

) (Bn-1)*Bn-1)°

Sap(C(C)) =2

9n* +33n2 -73n% —n
2
Proof: By definition of first Gouravaindex[3], we have

SGOl(C(Cn)) = {o(w) + o(v) + o(w)a(v)}
uveE(C(Cn))

560,(C(Cy) =

Using table 2, we note that

n ((ir(l3; -

n?—3n
+< .
+(Bn-1)?%)

3 In* +33n2 —73n>—n
h 2

5G0,(C(CY) =2 1+ Gn - 7))

1)(5n —7)

)((371— D+@Bn-1)

Corollary 2.6.
1.5(€(Cy)) = S10(C(C,)) = 3n® + 6n%2 — 13n

2.5,(c(cy) = % (51,1(C(Cn)))
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0
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3 In* + 27n% — 85n2 + 25n
- 2

3.PS(C(CY) = %(5-_1'—_1(6 (Cn))>

2n +
Jsn2 —26n+7) (6n—-2)

n?—3n

4.RPS (C((C)) = %(%;(C(QJ))

_ 4ny/(n? —26n+7) +3n° —10n® +3n
B 2

1
5.58(C(C) = 5 (SaalC(C)))

=Bn-1)° <2n(5n -7
N (n? - 3n)2(3n -1

6.F1S(C(Cn)) = S2,0(C(Cn))
=9n* + 35n% — 133n% + 97n
7.5G0,(C(Cp)) = S,1(C(Cr))
= 27n® + 132n* — 566n° + 500n?

—109n
8.5DS(C(Cy) = $1-1(C(C)
=2n (::3 + :Z:z) + (n* —3n)

Theorem 2.7. Forn = 4

Sa,b(C(Kn)) = patb+1 ((3)712—_3)‘1 (2n — 3)b

) )

3n—3
) 2n-3)*+(n-2)
Proof. By definition of central graph, and by computation,

2

n

we note that C(K,,) has "22+ vertices and n(n — 1) edges.
E(C(K,)) canbewritten as

E = {uveE(C(Kn))/d(u) =n-—1,dv) = 2}
Calculating status of every vertex, we find that (C(K,)) has

the following status edges:
Table 3: Details of status of vertices of C(K,,)

(a(w),0(v)) / uveE(C(Ky,))

(?m2 —3n

2
Using the above table and definition, we get,
Sap(C(Kn)) =n(n—1)

Total edges

,2n? — 3n> nn—1)
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3n2 — 3n\”
2
— na+b+1(n _ 1)
3n
<< ) (2n-3)" + ( )
Theorem 2.8. Forn > 2
6n® — 21n° + 31n* — 25n° + 9n?

2
Proof. By definition of first Gouravaindex[3], we have

SG0,(C(Ky) = {o(w) + o) + c(Wa ()}

uveE(C(Kp))

Using table 3, we note that

3n? —3n

5 ) (2n? — 3n)?+(2n? — 3n)¢ (

b

) (2n — 3)a

a

3n—-3 -3

2

SG0,(C(Ky) =

3n% —3n
2

3n%-3n 5
T) (ZTl - 371)

SG0,(C(Kp) =n(n—1) (( > + (2n? - 3n)

“

3 6n® —21n® + 31n* — 25n% + 9n?
- 2

Corollary 2.9.
7n* — 162n3 + 9n?
2
_3n°(n-1)’(2n - 3)
2

1.51(C(Kn)) = 51,0(C(Kn)) =

1
2.5, (C(Kn)) =5 (Sl,l(C(Kn)))

1
3.PS(C(Ky)) = 5 (5-711—71(6 (Kn)))

V2Z(n—1)
Vvén? —15n+9

1(511(0 (Kn))>
72
_ V3 (nz(n —1)y/2n2 —5n+ 3)

4.RPS(C(Ky)) =

ﬂ

2
V2

5.5¢(C(Ky) = %(Sa,a(C(Kn)))

_ n?**(n—1)(3n - 3)?(2n - 3)°
B 2

6.F;S(C(Ky)) = S2,0(C(Ky))
3 25n° — 91n° 4+ 111n* — 45n3
4
7.5G0,(C(K,)) = S21(C(Ky))
_ 42n® —201n” +357n° — 279n5 + 81n*
4
8.5DS(C(K,)) = S1,-1(C(Kp)
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3n-3 2(2n—-3)
=n(n—1)<2(2n_3)+ 3n — 3 )
Theorem 2.10.
Sap(CW;)) = 2n((5n + 2)*(8n — 6)°
+ (5n + 2)?(8n — 6)%)
+n((5n + 2)%(7n — 2)?
+ (5n + 2)°(7n — 2)%)
+n((7n — 2)%(6n)? + (7n — 2)P(6n)%)
+ (n? —3n)(5n + 2)4*?
Proof. By definition of central graph, and by computation,
wenotethat C(W,) with k =n + 1 has3n + 1 verticesand

(%251 edges. The edge set E(C(W;)) can be divided into
the following two parts.

E, = {uveE(C(Wk))/d(u) =n,d(v) = 2}

E, = {uveE(C(Wk))/d(u) =n,dw) = n}
Calculating status of every vertex, we find that (C(W,,)) has
the following four types of status edges:

Table 4: Details of status of verticesof C(W,,)
(e(w),0(v)) / uveE(C(W,)) | Total edges

(5n+2,8n—-6) 2n

(5n+2,7n-2) n
(7n—2,6n) n

(5n+2,5n+ 2) n? ; 3n

Using the above table and definition, we get,
Sap(C(W) = 2n((5n + 2)%(8n — 6)°
+ (5n+2)?(8n — 6)%)
+n((5n + 2)%(7n — 2)?
+ (51 +2)?(7n - 2)9)
+n((7n — 2)%(6n)? + (7n — 2)P(6n)%)
+ (n? = 3n)(5n + 2)¢*?
Theorem 2.11. Forn > 3

25n* +269n3 — 52n? — 100n
2
Proof. By definition of first Gouravaindex[3], we have

$60,(C(W,)) =

560, (C(W,)) = Z (o) + 0(v) + oW (W)}
uveE(C(Wy))

Using table 4, we note that
SG0,(C(W,) =2n((5n+ 2) + (8n — 6)
+ (5n+2)(8n —6))
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+n((5n+2)+ (7n—2)
+ (5n+2)(7n — 2))

+ n((7n —2) + 6n + 6n(7n — 2))

n?—3n
+( 3 )((5n+2)+(5n+2)
+ (5n + 2)?)

3 25n* + 269n3 — 52n% — 100n
2

Corollary 2.12.

1.5 (CW) = Sio(CW)
=5n3 4+ 38n% — 16n

1
2. 52 (C(Wn)) = z (51,1(C(Wk)))

3 25n% + 259n% — 128n?% — 68n
- 2

1
3.PS(C(W) =5 (s;_;(ﬂm)))

2n n

= +
V40nZ —14n— 12 +/35n2 + 14n
N n N n?—3n
Vaznz —12n  (10n+4)
1

4.RPS(C(Wy) = E(5%%(6(%)))

= 2n/40n% — 14n — 12
+ ny/35n2 + 14n — 4

+ny/42n%2 —12n +

-4

(n? = 3n)(5n + 2)

2
5.58(C(W,)) = %(sa,a(C(Wk)))
=2n(5n + 2)* (8n— 6)2
+n(5n + 2)* (7n — 2)@
+n(7n — 2)* (6n)?

(n? = 3n)(5n + 2)%¢
+ 2

6.F,S(C(W) = Sy0(C(W,)
= 25n* + 282n3 — 244n? + 80n
7.5G0,(C(W,)) = S, (C(Wy)

= 125n°% + 1781n* — 126613 — 396n?

+ 72n
8.SDS(C(W) = Sy _1(C(W,))
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) <5n+2+8n—6>
"\8n—6 "5n+2
+ (5n+2+7n—2)

"7n—2"5n+2
+n(

n—2 4 6n
6n n—
Theorem 2.13.
Sap(C(E)) = 2n((8n+ 1)%(13n — 4)°
+ (8n + 1)?(13n — 4)%)
+2n((8n + 1)%(11n — 2)?
+ (8n+ 1)P(11n — 2)%)
+2n( (11n — 2)2(9n)? + 11n — 2)?(9n)%)
+ 2(2n? — 2n)(8n + 1)%+b
Proof. By definition of central graph, and by computation,

2) + (n? — 3n)

we notethat C(F,) has (5n + 1) verticesand (2n? + 4n)
edges. The edge set E(C(Fn)) can be divided into the
following two parts.

E, = {uveE(M(Fn))/d(u) =2n,dw) = 2} and

E, = {uveE(M(Fn))/d(u) =2n,dw) = Zn}
Calculating status of every vertex, we find that (C(Fn)) has
the following four types of status edges:

Table5: Details of status of vertices of C(F,,)

(a(w),0(v)) / uveE(C(F,)) Total edges
(8n+1,13n—4) 2n
Bn+1,11n—-2) 2n

(11n—2,9n) 2n
(8n+1,8n+1) 2n% —2n

Using the above table and definition, we get,
Sap(C(F) = 2n((8n + 1)*(13n — 4)°
+ (8n+ 1P(13n — 4)%)
+2n((8n + 1)%(11n — 2)?
+ (8n+ 1)P(11n — 2)%)
+2n( (11n — 2)%(9n)? + 11n — 2)?(9n)%)
+2(2n% — 2n)(8n + 1)*?
Theorem 2.14. Forn > 2
SG0,(C(F,)) = 128n* + 518n° — 22n? — 30n
Proof. By definition of first Gourava index, we have
SGOl(C(Fn)) = {o(w) + o(v) + a(w)o(v)}

uveE (C(Fp))
Using table 5, we note that
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SG0,(C(F)) =2n((8n+1) + (13n —4)
+(8n+1)(13n—4))
+2n((Bn+1)+ (11n —2)
+ (8n+ 1)(11n — 2))
+2n((11n —2) + (9n) + 9n(11n — 2))
+(2n? —2n)((Bn+ 1)+ (8n+ 1)
+(Bn+1)(8n+1))
= 128n* + 518n3 — 22n? — 30n
Corollary 2.15.

1.5,(C(Fy) = S10(C(EY)
=32n3% 4+ 92n% — 16n
1
2.5,(C(F)) = 3 (51,1(C(Fn)))
= 128n* + 486n3 — 114n? — 14n
1
3.PS(C(F)) =5 (5_71__71(6(51))>

_ 2n + 2n
V104n2 —19n—4 +/88n?2 —5n—2
2n 4n? — 4n

+\/99n2 —18n * (8n+1)
4.RPS(C(F,)) = %(s;l(C(Fn))>
2’2

= 2ny/104n% — 19n — 4
+2n4/88n2 —5n—2
+ 2n4/99n% — 18n

+(4n? —4n)(Bn + 1)

5.58(C(5)) = 5 (SaalCR))
=2n(8n + 1)*(13n — 4)¢
+2n(8n + 1)%(11n — 2)¢
+2n(11n — 2)*(9n)?
+ (2n?2 - 2n)(8n + 1)2¢
6.F,S(C(F) = S20(C(EY)
= 256n* + 1048n3 — 380n2 + 48n
7.5G0,(C(F)) = S,1(C(Fy))
= 2048n° + 10392n* — 3567n% — 140n? + 24
8.SDS(C(F)) = S1-1(C(FY))

—> <8n+1 +
BT

13n—4>
8n+1
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I11. CONCLUSION

Inthisarticle, we have obtained the (a, b) —statusindices of
central graphs of some standard graphs. We can find these
indices for other derived graphs also. We can use status to
define a new polynomial also.
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