
International Journal of Basic Sciences and Applied Computing (IJBSAC) 

ISSN: 2394-367X, Volume-2 Issue-6, December 2018  

7 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  Retrieval Number: F0080122618/19©BEIESP 

 

Abstract: In this paper, we start by giving an equivalence 

relation on a topological space X which correspond, under the 

action of a topological monoid S, to the S−invariant control sets 

for control systems. Then we give some results about the 

S−invariant classes for this relation. The conditions for the 

existence and uniqueness of relative S−invariant classes will be 

given. 
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I. INTRODUCTION 

The invariance theory is one of the principal concepts in the 

topological dynamics system 

[2, 4]. Colonius and Kliemann in [3] introduced the concept 

of a control set which is relatively 

invariant with respect to a subset of the phase space of the 

control system. From a more 

general point of view, the theory of control sets for semigroup 

actions was developed by San 

Martin and Tonelli in [6]. 

In this paper, we will define an equivalence relation on a 

topological space which is acted 

by topological monoid S as a transformation semigroup. 

Then we study the S−invariant 

classes for this relation in X, in particular, the conditions for 

the existence and uniqueness 

of S−invariant classes will be given. 

II. PRELIMINARIES 

Throughout this paper, cl(A) will denote the closure set of a 

set A, int(A) the interior set of 

A  and  all topological spaces involved Hausdorff. 

Definition 2.1. [4] Let  S  be a monoid with the identity 

element   e  and also a topological 

space.  S  will be called a topological monoid if the 

multiplication operation of   S : (s, t)        st 

is continuous mapping from   S × S  to  S . 

Definition 2.2. [6] Let  S  be a topological monoid and  X  be 

a topological space. We say 

that  S  acts on  X  as a transformation semigroup if there is a 

continuous map a : S×X         X 

between the product space S × X and X satisfying 
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we  further require that   a(e, x) = x   for all . The triple  

(S , X , a)  is called an S−flow;           

   will denote a(s, x). An S−flow   (S , X , a) is called 

S−phase flow if S is a compact space. 

The  orbit  of   under  S  is the set         

. For a subset  M  of  X , 

S(M) denotes the set . And a 

subset  M  is called an S−invariant 

set if    and  S(M)    M  .  A control set for S on  X  is 

a subset  C  of  X  which satisfies: 

 

1. int(C)  ; 

2. for  all   

3. C  is a maximal with these properties. 

 

We say that a subset    M   X   satisfy the no-return condition 

if   y cl(Oa(x)) for some   and  cl(Oa(y))   M ≠  , 

then  

 

Lemma 2.3. [ Zorn’s Lemma ][5] If each chain in a partially 

ordered set has an upper bound, 

then there is a maximal element of the set. 

 

 3    S−invariant classes 

 

Let  (S , X , a)  be an S−flow .  From the action on  X  we can 

define the relation    on  X  by 

 

            if     and    ,      

  . 

 

It’s clear that   is an equivalence relation and [ X ] will 

denote the set of all equivalence classes induced by    on  X 

. We observe that  [x]  Oa(x) for all  x  X ,  and if y  

Oa(x), then Oa(y)  Oa(x)for all x, y  X. 

The following theorem shows that ant equivalence class with 

nonempty interior set is a control set for S on  X . 

 Theorem 3.1. Let (S,X, a) be an S−phase flow. A class [x]  

[X ] with intX([x])  is a control set for  S  on  X . 

Proof.   It’s clear that  [x]  Oa(x)  Oa(y)  cl(Oa(y))   for 

all y  [x]. Suppose  C  be a subset of  X  satisfying the 

property 

 

C  cl(Oa(z)) for all z  C and [x]  C. 
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Let  w  C. Then w  cl(Oa(z)) for all z C. Since S is a 

compact space, X is a Hausdorff space and by the continuity 

of the action  a,  then the orbit Oa(x) is a closed subset of X  

for all x  X ( i.e., cl(Oa(x)) = Oa(x) for all x  X). Then w   

Oa(z) for all z  C. Since x  C,  then w  Oa(x). On the 

other hand, since x  [x] C Oa(w), then w  [x]. Hence 

C=[x].  

        In the following lemma, we give the necessary and 

sufficient conditions for the equivalence classes to be 

S−invariant classes. 

Lemma 3.2. Let (S , X , a) be an S−flow. A class [x]   [ X ] 

is an S−invariant class if and 

only if   [x] = Oa (x) . 

Proof. Suppose [x]  [X] is an S−invariant and let y   Oa 

(x), then y =  for some s S. Since x  [x], then y 

S([x])  [x]. Hence Oa (x)  [x], and we have [x]  Oa 

(x). Therefore [x] = Oa (x). 

      Conversely, let [x] = Oa (x) and y S([x]), then y =  

for some s S, z  [x]. Hence z  Oa (x). Take z =  for 

some    S. Hence  

y =  = s  ( ) =     Oa (x) = [x]. 

 

Therefore [x] is S−invariant class. 

Theorem 3.3. Let (S ,  X , a) be an S−phase flow. Then for all 

x   X, there is a unique 

S−invariant class [y]  Oa (x). 

 

Proof. For x   X, consider the family of subsets  

 

Ex = {z : Oa(z)  Oa(x)}.  

 

We can define the relation _ on Ex by  

    if    Oa( )  Oa( )    for    , . 

 

It’s clear that the family with  is a partially order set. 

Let {zi : i  } be a linearly ordered subset of , where 

 is an index set. Since S is a compact space, X is a 

Hausdorff space and by the continuity of the action a, then the 

orbit Oa(x) is a compact closed subset of   X  for all x X. 

Hence we have a chain {Oa(zi) : i  } of closed subsets of 

a compact Oa(x). Hence the intersection 

 
 Take   r Oa(zi) for all i  Then Oa(r)  Oa(zi) for all  

i imply that  Oa(r)  is a lower bound of the chain 

{Oa(zi) : i } ( i.e., r is an upper bound of the linearly 

order subset {zi : i }  of  Ex ) .  Hence by Zorn’s lemma 

implies that the family Ex has a maximal element, say y. 

Then [ y ]  Oa( y)  Oa(x).  

Now, we show that [y] is an S−invariant. Let z Oa(y) , then 

z Oa(z)  Oa(x) and y z , but by the maximality of y, we 

get that  z y, this implies y Oa(z).Hence z  [y] ( i.e., 

Oa(y)  [y] ) and we have that [y]  Oa(y). Then by Lemma 

3.2, [y] is an S−invariant class. Now, let [ ]  [y] be an  

 

S−invariant class such that [ ] Oa(x). Then  

Oa( ) Oa(x). Hence  Ex. By the maximality of y, we 

get that  y, this implies that  

[y] = Oa(y)  Oa( ) = [ ] . 

Hence [y] = [ ] , this means that [y] is a unique. 

Theorem 3.4. Let ( S , X , a) be an S−phase flow. [x]  [X] 

has no-return condition for all 

 x X . 

Proof. Since  S  is a compact space, X  is a Hausdorff space 

and by the continuity of the action 

a, then the orbit Oa(x) is a compact closed subset of  X  for all  

x  X ( i.e., cl(Oa(x)) = Oa(x) 

for all x  X). Let  z  Oa(y)  for some  y  [x] and Oa( )  

[x] . Take w   Oa(z) and              

w  [x]. Hence 

x    Oa(x) Oa(w)  Oa(z). 

On the other hand, z  Oa(y) for some y  [x], we have 

z  Oa(z) Oa(y)  Oa(x). 

Hence z [x]. 

The next theorem clears that if M has the no-return condition 

, then any a class [x] is 

entirely contained in M or  M c . Also M is an S−invariant if 

[x] is an S−invariant class for 

all x  M . 

 

Theorem 3.5. Let (S , X , a) be S−phase flow and M be a 

subset of  X  has no-return condition.M  is an S−invariant set 

if   [x]  is an S−invariant class for all  x  M . 

 

Proof. It’s clear that    because    . 

Since S is a compact space, X is a 

Hausdorff  space and by the continuity of the action a, then 

the orbit  Oa(x)  is a compact 

closed subset of X  for all x X  ( i.e., cl(Oa(x)) = Oa(x) for all 

x  X ). Let   

then y  [x] for some x  M .  Hence [x] = [y] ( i.e., x Oa(y) 

and y Oa(x)). Since 

x M ,  then Oa(y) M . By the no-return condition we 

have t hat y M. Hence  

M  =   

       Now, we show that M is an S−invariant set. Let  y   

S(M).  Then y =  for some 

x M. Hence y Oa(x). Since [x] is an S−invariant class 

then by Lemma 3.2, [x] = Oa(x) 

and by Equation (1), we get that  y  [x]  M . Hence M  is 

an S−invariant. 
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