On the Invariance Property for S–Flows in Ttopological Dynamics System

Abdulkafi A. Al-Rafaei, Amin Saif

Abstract: In this paper, we start by giving an equivalence relation on a topological space X which correspond, under the action of a topological monoid S, to the S-invariant control sets for control systems. Then we give some results about the S-invariant classes for this relation. The conditions for the existence and uniqueness of relative S-invariant classes will be given.

Keywords: Topological monoid; S-flow; S-phase flow. AMS classification: 06F05, 76D55.

I. INTRODUCTION

The invariance theory is one of the principal concepts in the topological dynamics system

[2, 4]. Colonius and Kliemann in [3] introduced the concept of a control set which is relatively

invariant with respect to a subset of the phase space of the control system. From a more

general point of view, the theory of control sets for semigroup actions was developed by San

Martin and Tonelli in [6].

In this paper, we will define an equivalence relation on a topological space which is acted

by topological monoid S as a transformation semigroup. Then we study the *S*-invariant

classes for this relation in X, in particular, the conditions for the existence and uniqueness

of S-invariant classes will be given.

II. PRELIMINARIES

Throughout this paper, cl(A) will denote the closure set of a set *A*, *int*(*A*) the interior set of

A and all topological spaces involved Hausdorff.

Definition 2.1. [4] Let S be a monoid with the identity element e and also a topological

space. S will be called a *topological monoid* if the multiplication operation of S: (s, t) = st

is continuous mapping from $S \times S$ to S.

Definition 2.2. [6] Let S be a topological monoid and X be a topological space. We say

that *S* acts on *X* as a transformation semigroup if there is a continuous map $a: S \times X$ *X*

between the product space $S \times X$ and X satisfying a(st, x) = a(s, a(t, x)) for all $s, t \in S, x \in X$;

Revised Version Manuscript Received on 20 March, 2019.

. Abdulkafi A. Al-Rafaei, Faculty of Applied Sciences, Thmar University, Thmar, Yemen

Amin Saif, Faculty of Applied Sciences, Taiz University, Taiz, Yemen

we further require that a(e, x) = x for all $x \in X$. The triple (*S*, *X*, *a*) is called an *S*-*flow*;

 $s\bar{a}x$ will denote a(s, x). An S-flow (S, X, a) is called S-phase flow if S is a compact space.

The orbit of $x \in X$ under S is the set $O_a(x) = \{s\bar{a}x : s \in S\}$. For a subset M of X,

S(M) denotes the set { $s\bar{a}m : s \in S, m \in M$ }. And a subset *M* is called an *S*-invariant

set if $M \neq \emptyset$ and $S(M) \subset M$. A *control* set for S on X is a subset C of X which satisfies:

- *1.* $int(C) \neq \emptyset$;
- 2. for all $x \in C$, $C \subset cl(O_a(x))$;
- 3. *C* is a maximal with these properties.

We say that a subset $M \subseteq X$ satisfy the no-return condition if $y \in cl(Oa(x))$ for some $x \in M$ and $cl(Oa(y)) \cap M \neq \emptyset$, then $y \in M$.

Lemma 2.3. [Zorn's Lemma][5] If each chain in a partially ordered set has an upper bound, then there is a maximal element of the set.

3 S-invariant classes

Let (S, X, a) be an *S*-flow. From the action on *X* we can define the relation \sim on *X* by

$$x \sim y$$
 if $x \in O_a(y)$ and $y \in O_a(x)$,
 $x, y \in X$.

It's clear that \sim is an equivalence relation and [X] will denote the set of all equivalence classes induced by \sim on X. . We observe that $[x] \subseteq Oa(x)$ for all $x \in X$, and if $y \in O_a(x)$, then $O_a(y) \subseteq O_a(x)$ for all $\overline{x, y} \in X$.

The following theorem shows that ant equivalence class with nonempty interior set is a control set for S on X.

Theorem 3.1. Let (S, X, a) be an S-phase flow. A class $[x] \in [X]$ with $intX([x]) \neq \emptyset$ is a control set for S on X.

Proof. It's clear that $[x] \subseteq O_a(x) \subseteq O_a(y) \subseteq cl(O_a(y))$ for all $y \in [x]$. Suppose *C* be a subset of *X* satisfying the property

 $C \subseteq cl(O_a(z))$ for all $z \in C$ and $[x] \subseteq C$.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication Let $w \in C$. Then $w \in cl(O_a(z))$ for all $z \in C$. Since *S* is a compact space, *X* is a Hausdorff space and by the continuity of the action *a*, then the orbit Oa(x) is a closed subset of *X* for all $x \in X$ (i.e., $cl(O_a(x)) = O_a(x)$ for all $x \in X$). Then $w \in O_a(z)$ for all $z \in C$. Since $x \in C$, then $w \in O_a(x)$. On the other hand, since $x \in [x] \subset C \subset O_a(w)$, then $w \in [x]$. Hence C = [x].

In the following lemma, we give the necessary and sufficient conditions for the equivalence classes to be S-invariant classes.

Lemma 3.2. Let (S, X, a) be an S-flow. A class $[x] \in [X]$ is an S-invariant class if and

only if $[x] = O_a(x)$.

Proof. Suppose $[x] \in [X]$ is an *S*-invariant and let $y \in O_a$ (*x*), then $y = s\bar{a}x$ for some $s\in S$. Since $x \in [x]$, then $y \in S([x]) \subset [x]$. Hence O_a (*x*) $\subset [x]$, and we have $[x] \subset O_a$ (*x*). Therefore $[x] = O_a$ (*x*).

Conversely, let $[x] = O_a(x)$ and $y \in S([x])$, then $y = s\bar{a}z$ for some $s \in S$, $z \in [x]$. Hence $z \in O_a(x)$. Take $z = s'\bar{a}x$ for some $s' \in S$. Hence

 $y = s\overline{a}z = s\overline{a} (s'\overline{a}x) = ss'\overline{a}x \in O_a(x) = [x].$

Therefore [x] is S-invariant class.

Theorem 3.3. Let (S, X, a) be an S-phase flow. Then for all $x \in X$, there is a unique S-invariant class $[y] \subset O_a(x)$.

Proof. For $x \in X$, consider the family of subsets

 $Ex = \{z : O_a(z) \subseteq O_a(x)\}.$

We can define the relation _ on Ex by

 $x_1 \leq x_2$ if $O_a(x_2) \subset O_a(x_1)$ for $x_1, x_2 \in E_x$.

It's clear that the family E_x with \leq is a partially order set. Let $\{z_i : i \in \Lambda\}$ be a linearly ordered subset of E_x , where Λ is an index set. Since *S* is a compact space, *X* is a Hausdorff space and by the continuity of the action a, then the orbit $O_a(x)$ is a compact closed subset of *X* for all $x \in X$. Hence we have a chain $\{O_a(z_i) : i \in \Lambda\}$ of closed subsets of a compact $O_a(x)$. Hence the intersection

$$\bigcap_{i\in\Lambda}O_a(z_i)\neq\emptyset.$$

Take $r \in O_a(z_i)$ for all $i \in \Lambda$. Then $O_a(r) \subseteq O_a(z_i)$ for all $i \in \Lambda$, imply that $O_a(r)$ is a lower bound of the chain $\{O_a(z_i) : i \in \Lambda\}$ (i.e., *r* is an upper bound of the linearly order subset $\{z_i : i \in \Lambda\}$ of E_x). Hence by Zorn's lemma implies that the family E_x has a maximal element, say *y*. Then $[y] \subseteq O_a(y) \subseteq O_a(x)$.

Now, we show that [y] is an *S*-invariant. Let $z \in O_a(y)$, then $z \in O_a(z) \subset O_a(x)$ and $y \leq z$, but by the maximality of y, we get that $z \leq y$, this implies $y \in O_a(z)$. Hence $z \in [y]$ (i.e., $O_a(y) \subset [y]$) and we have that $[y] \subset O_a(y)$. Then by Lemma 3.2, [y] is an *S*-invariant class. Now, let $[\alpha] \neq [y]$ be an

S-invariant class such that $[\alpha] \subseteq O_a(x)$. Then

 $O_a(\alpha) \subseteq O_a(x)$. Hence $\alpha \in E_x$. By the maximality of y, we get that $\alpha \leq y$, this implies that

 $[\mathbf{y}] = O_a(\mathbf{y}) \subseteq O_a(\boldsymbol{\alpha}) = [\boldsymbol{\alpha}].$

Hence $[y] = [\alpha]$, this means that [y] is a unique.

Theorem 3.4. Let (S, X, a) be an S-phase flow. $[x] \in [X]$ has no-return condition for all

 $x \in X$.

Proof. Since S is a compact space, X is a Hausdorff space and by the continuity of the action

a, then the orbit Oa(x) is a compact closed subset of X for all $x \in X$ (i.e., cl(Oa(x)) = Oa(x)

for all $x \in X$). Let $z \in Oa(y)$ for some $y \in [x]$ and $Oa(z) \cap [x] \neq \emptyset$. Take $w \in Oa(z)$ and

 $w \in [x]$. Hence

 $x \in Oa(x) \subset Oa(w) \subset Oa(z).$

On the other hand, $z \in Oa(y)$ for some $y \in [x]$, we have

 $z \in Oa(z) \subset Oa(y) \subset Oa(x).$

Hence $z \in [x]$.

The next theorem clears that if M has the no-return condition , then any a class [x] is

entirely contained in M or M^c . Also M is an S-invariant if [x] is an S-invariant class for

all $x \in M$.

Theorem 3.5. Let (S, X, a) be S-phase flow and M be a subset of X has no-return condition.M is an S-invariant set if [x] is an S-invariant class for all $x \in M$.

Proof. It's clear that $M \subset \bigcup_{x \in M} [x]$ because $x \in [x]$. Since S is a compact space, X is a

Hausdorff space and by the continuity of the action *a*, then the orbit $O_a(x)$ is a compact

closed subset of X for all $x \in X$ (i.e., $cl(O_a(x)) = O_a(x)$ for all $x \in X$). Let $y \in \bigcup_{x \in M} [x]$,

then $y \in [x]$ for some $x \in M$. Hence [x] = [y] (i.e., $x \in O_a(y)$ and $y \in O_a(x)$). Since

 $x \in M$, then $O_a(y) \cap M \neq \emptyset$. By the no-return condition we have t hat $y \in M$. Hence

 $M = \bigcup_{x \in M} [x]$

Now, we show that *M* is an *S*-invariant set. Let $y \in S(M)$. Then $y = s\bar{a}x$ for some

x ∈M. Hence y ∈ $O_a(x)$. Since [x] is an *S*-invariant class then by Lemma 3.2, [x] = $O_a(x)$

and by Equation (1), we get that $y \in [x] \subset M$. Hence *M* is an *S*-invariant.

REFERENCES

- 1. B. Bohuslav, D. Alan, Dynamical systems on compact extremally disconnected
- 2. spaces, Topology and its Applications, 41 (1991) 41-56.
- 3. B. Bohuslav, F. Frantisek, Structural properties of universal minimal dynamical
- 4. systems for discrete simgroups, Amer. Math. Soc. 349 (1997) 1697-1724.
- 5. F. Colonius, W. Kliemann, Linear control semigroups acting on projective systems,
- 6. J. of Dynamics and Differential equations, 5 (1993) 469-528.
- J. Lawson, Flows, congruences and factorizations, Topology and its Applications, 58 (1994) 35-46.
- H. Allen, Algebraic Topology, Cambridge University press, Cambridge, 2002.
- M. San, P. Tonelli, Semigroup actions on homogeous spaces, Semigroup Forum, 50 (1995) 59-88.

AUTHORS PROFILE

First Author

Name: Abdulkafi Abdulfattah Saleh Al-Refaei Date of Birth: November 019, 1974 Place of Birth: IBB, Yemen

Educational skills:

Assosiate Professor in Department of mathematic Faculty of applied science Thamar University

- PhD school of Mathematics, Faculty Science and Technology National University of Malaysia (Universiti Kebangsaan Malaysia UKM) 2007.
- M. Sc. Math.: Department of Mathematic, Moustansaeria University, Iraq, 2002.
- B. Sc. Math.: Department Mathematic, TAIZ University, Yemen, 1996

Author-2 Photo

٠

Second Author

Name:Ameen hamood Saif Al-sanawi Taiz University Faculty of education Department of mathematics Assistant of Professor

SCIENTIFIC TITLES

- Assistant professor in 26-11-2008 Faculty of Applied sciences Thamar University, Yemen.
- Associate Professor in 26-10-2014 Faculty of Applied sciences Thamar University, Yemen.
- Vice President for Academic Affairs, Damar University, 2017-2018
- * Dean of Dhamar Institute for Continuing Education (2016-2018).
- * Member of the Academic Council September 2015 utill 2018.
- Head of Library, Printing, Publishing and Translation Department, Damar University, January 2015.
- Vice Dean for Graduate Studies in the Faculty of Applied sciences, Thamar University, Yemen, since Dic 2012.
- Head of Mathematic in the Faculty of Applied sciences, Thamar University, Yemen, since Nov 2010 until Dicmber 2012.
- Served as Lecturer in the Faculty of Applied sciences, Thamar University, Yemen, since Jan 2008 until present.
- Served as Lecturer in the Faculty of Education and Science, Sana'a University, Arhab 2007.

