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Monoid Algebras and Application

Latifa Faouzi

Abstract: Algebras as, free algebras over posets, upper-lattice
Boolean algebras and semigroup algebras can be viewed as
F2-algebras over a monoid or a quasi-monoid. This paper deals
with this notion.

Index Terms: Monoid algebras, quasi-monoid algebras,

Boolean algebras, Tail algebras, upper-lattice algebras, free
algebras over posets, interval algebras.

I. INTRODUCTION

In the theory of Boolean algebras, see for

instance [Kl, generally we consider a Boolean algebra B
as a Boolean lattice {B.0,1.Av,—} where (B.AV) s a
distributive lattice with a first element 0 and a last element 1,
and each member b £ B has a unique complement —x, that
isxvi{-x)=1and =xA(—x)=0. But we can see a
Boolean algebra as a structure of the form {B,0,1.+,.} ,
wherex+y =xay:=(xvyl — (x Ay) is the symmetric
difference and Xx-y = XAy is an algebra over the field
k=F; = Z/(2), see L. Heindorf [H1] and E. Evans [E].
The scope of this work is: To extend all their results in the
context of k-algebras, see for example [H1], [E] and to
establish some properties of algebras over monoid (or semi
group algebras) as algebras then derive some concrete
representations ( free poset algebras R. Bonnet and M. Rubin
[BR], R. Bonnet, L. Faouzi and W. Kubis [BLK], R.
Bonnet, U. Abraham, W. Kubi’s and M. Rubin [BAKR],
upper semi lattice algebras M. Bekkali and D. Zhani
[BZ1,BZ2], I. Chakir and M. Pouzet [CP]), see J. D. Monk
[Monk]. This is possible since in these algebras over monoid
there is a normal form of non zero elements which makes it
easy to look at them as algebra over the
field k=F; = Z/{2) see M. Bekkali and D. Zhani
[BZ1,BZ2]. It has to be noticed that the Boolean algebraic
character remains hidden since the use of complement in
these structures stands out for itself. Precise statements of
relevant theorems needed for this paper is at the end of the
article.

On the other hand, the class of quasi-monoid k-algebras is
studied; one classical example of monoid k-algebra is the
ring of polynomials k[X], which is the k-algebra over the
monoid (M, +}.

At the end, . we study the special examples developed by
Heindorf [H1] and Evans [E], which are called semi-ring
algebras or quasi-upper-lattice algebras, that are Boolean
algebras of the form F,[#i] where if is a quasi-monoid.
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These examples were initiated by Koppelberg and Monk
[KM], developed by Heindorf [H1], Evans in [E] and by
Bekkali and Zhani in [BZ1,BZ2].

Recall the definition of a disjunctive set.

Definition 1.1. A subset H of a Boolean algebra A is
disjunctive whenever:

(1) OisnotinH;

(2) Ifh by hyareinHwithn>0and h = hy + - + hy,
then h = h; for some i.

Definition 1.2. A Boolean algebra A is a semi-group algebra
whenever it is generated by a set H which has the following
properties:

(1) 01eH

(2) His closed under multiplication

(3) H {0} isdisjunctive.

Notice the reminiscent similarity in this definition and the
definition of a basis, below, in (). Moreover, elementary
properties of semigroup algebras are found in Chapter 2 of
cardinal functions book [Monk]. The notion was introduced
by Heindorf in Fundamenta vol. 135, pp. 37 — 47.

Now, in what follows, k denotes a commutative field, M, N,
L, etc. denote monoids. Recall that a monoid (also called
semigroup) is a set (M ; -) with ” - ” is commutative,
associative and has a unit denoted by 1™ . We shall denote
=My by =y or more simply by xy, and x(yz) = (xy)z by xyz.
Now, recall that (S; -) is called a semi-lattice whenever ” - ”
is commutative, associative, and x* =x for all x € S; the
binary operation - denoted by A satisfiesx = ¥ whenever
xAy =x. Hence, a semi-lattice (S, -), with a greatest
element, is a monoid.

Next, let k, M be a field and a monoid respectively. The
k-algebra over M , denoted by k[M], may be defined as
follows: Consider the k-vector space k™" having M as
k-basis. Now the multiplication - on M, extended by
biliearity, induces a structure on k™ of k-algebra. This
algebra, denoted by k[M] is called the k-algebra over the
monoid M . For instance, a construction may be achieved as
follows: Denote by k*"the subspace of k™ consisting of all
x € k™ such that olx) == {s € M:x, = 0} is finite. Hence
the canonical basis of k™ is {e;:s e M} where
e, ={8,,:t€5) where 5;; =1 and &;; =0for t =s.
The multiplication of k™ is defined by e;.e = &
extended by bilinearity: see [Bo, Ch Ill, §2.6]), [L, Ch 5, 81]
and [R, §1.2].
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The algebra &7 is denoted by k[M], and for simplicity, we
identify s and ;. Notice that,

() M is basis of the algebra k[M] and M is closed under
product.

In particular st # 0 for s, € M.

Note that k[M] is a unitary commutative algebra (the
unitt*™ of k[M] is 1%). A monoid algebra is a k-algebra
over some monoid. A well-known example of monoid
k-algebra is the algebra of polynomials. Indeed, for a given
set I, k[(¥; )] isthe k-algebra over ™. Another example
is the product of two rings of polynomials k[X] x k[Y] isan
algebra over a monoid.

The notion of quasi-monoid k-algebras is defined as follows
and generalizes the notion introduced by Heindorf [H1] and
Evans [E] in the context of Boolean algebras. For, let A be
aunitary k-algebra. Suppose that A has a basis Jf such
that # U {0#} is a multiplicative unitary monoid and
14 = 1™ € i First, remark that J satisfies the following
property:

(t)for every s.t € ﬁ?::’f st 0% then st e M

Notice that the following universal property holds too:

Proposition 1.3. Let C be a k-algebra and f: 5 —= C be a
function satisfying F(0%) =0, F(1%)=1°  and for any
st € M if st € M ten fFls)f() = f(st). Then f is
extendable in a unique algebra homomorphism fiA—=C.

The algebra A is called the quasi-monoid k-algebra (over 54 ) and
A is denoted by [#7] . Hence,

Claim 1.4.
algebra.

The converse is not true, to see this consider
A= k[X] / (X¥*). Then Ais a quasi-monoid algebra that is
not a monoid-algebra over k. Indeed A = k[N]] where
N =11,%} and X¥* = 0in A. Butthere is no monoid M such
that A = kIM] . Otherwise if such a M exists,
then1*™ =1 & M and thus M contains only another one
element T.HenceT*=1 orT*=T 1, withT = « + X,
This implies that either T = 0 or T = £1. A contradiction.

Every monoid algebra is a quasi-monoid

1. FREE K-ALGEBRAS OVER AMONOID ORA
QUASI-MONOID

We begin by stating well-known results2.1and2.20n
monoid algebras.

Proposition 2.1.

(a) Let M be amonoid, A kea k-algebra and £: M — A te a
function satisfying f(1™) = 14 fls}f(t) = f(st) and for any
st € M -Then f is extendable in a unique algebra
homomorphism f: k[M] — 4

(b) Let M and N be two monoids andf: M —= N be a
monoid’s homomorphism such  that f{1*) = 1¥ Then *is
extendable in a unique algebra homomorphism
f: k[M] - K[N] satisfying

fst) =f(st) = fls)f(t)
Moreover ;

i. If £ isoneto-onethenf
i. f f ontothenf isonto
Let {M;:i €I} be a family of monoids. Then the product
monoid M =TI, M. exists with the operation
() Myt )= (T Miypl) ad 1M = (1™ ),  Then the
weak product [T}, M d enotes the submonoid of M
consisting of x = {x" }; satisfying is

olx) = {i e I:x" = 1™} is finite. Let4;: M; = M be the
canonical monoid embedding defined by x' =t and
xt = 1Mifor

i # [ for t € M;. By proposition 2.1, i; is extendable in a
unique algebra homomorphism 4;: k[\{1 — k[T, M ] .

The following fact shows that k[ITiZ, M ] is the tensor

=fls)f(t) and F(1M)=1N

is one-to-one, and

product (also called “free product”) of the family
{(k[M;]:: e 1), [J, 83.7], Also Part (b) follows from Part (a).
Proposition 2.2.

(a) Let {M;:i I} be a family of monoids. For
every commutative k-algebra D and for any
sequence of k-algebra homomorphism
fi:k[M] = D such that £(1¥M%) = 1P for
lel | there is a unique k-algebra
homomorphism F: k[IT¥, » ]—> D  such
that fi = f = 4 for € 1. Hence k[T, i ] is
the tensor product &;s; kIM;l of the
family (k[M;l:i €I} in the category of
k-algebras.

(b) Any k-algebra is an algebra homomorphic
image of k[M] for some monoid M.

To prove that the class of algebras over monoids is closed
under finite product, we extend the “lexicographic sum of
posets indexed by a poset™ in the following way. Let (L, /1) be
a semilattice, and let {M;:i € L} be a sequence of monoids.
We assume that the M; ‘s are pairwise disjoint. We define a
monoid 2, M _The universe of E?’Eb M, is Mi=Uge, M
We shall deflne an operation . on M. For i€ L | let
G- M; _ M; betheidentityand for i = j € L let gijs M M;
be defined as g; ;(u) = 1™foranyu e M;sofori =j <k
we have g; = g:;° g;x and each g;; is a monoid
homomorphism that preserves the unit. For s.t € M, let
L.jeLbesuchse M; andt e M; and we set

sMt= g (5).MN g (6
It is easy to check that ELE., M is a monoid (the unit is1™e
where e isthe unit of L ). The structure M = E;-EELM[is called
the L-sum of the sequence {M;:i e L} of monoids. Notice
that the direct sum lim (M;, g; ;) is trivial: if L has a
smallest element 0 then [im {Hl, gij} =M, and
lim {M;, g;; } = {1}otherwise. Also ™ is defined in a more
explicit way as follows. For s € M; and ¢ € M;: We shall
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s My = My ifi=j
sMe=—s=tMs if i=j
sMe =t =tMs ifj<i
sMy —1Mw — g Mg if i and j are incomparable

We shall construct a homomorphism

fik[ZF, M ] — T, k0M;]. We denote £Z, M by M.
Recall that 1™ = 1™= where e isthe unitof L. Fori € L | let
fir M — k[M;] defined as follows:

Fld =u ) ifu e M;

filw) =1k ifu €M; andj>i
£lu) = oDl ifu €M and j £1
Recall that 1¢ = 1% for any £ €L . Notice that

1y = 15784 opviously flvw) = £ (&) f (w) for every
v, w € M. By proposition 2.1, f; is extendable in an unique

k-algebra  homomorphism  fi: K[M] — k[M;] Let
f= fdizp: k[M] — Tliep k[M(] defined by
fx)y={fi(x))e for x€k[M] . Since each f is a

homomorphism, f is a k-algebra homomorphism. The next
lemma will be used to prove that the class of algebras over
monoids is closed under finite products and weak product.

Lemma 2.3. Assume that {(L.A} be a semilattice and
(M, ie L) be asequence of monoids. Then f is a k- algebra
embedding from K[E2, M;] into [Ticp KIM;].

Proof. Since M is a basis of the k-vector space K[MI], for
any non-zero KIM] tere are an unique finite subset of o*
and for each ied® an unique finite subset
{sf:i<n*(@}EM; and an unique finite sequence of
non-zeroscalar {J-f]- Ek:j=< i) such that
%= Eieox Lianxiy Mjsis-

Let x € K[M] be such that f(x} = 0 that is f;(x) = 0 for
every i € L. By contradiction, suppose that == 0. Letl be
a maximal element of ¢ and t=c"\{l}. By the
definition, we have

DINO W L LD I L
j=n*(1) |q:|:|x||‘| ]{I:I"‘ll‘l ' .

gnd fx) = 0. From the choice of 1 and the definition of
f; , it follows that:

KIM] _ 3 =
R = §(x) = qu:uxujljzi{u'“iij‘jﬁx.jsi{]

Since the s{‘jrs are k-linearly independent, 43 =0 for
ever j= n*(l) . A contradiction. So x=10 .
Cqfd

Let (Ai:iel}  be asequence of unitary k-algebras. For

xi= gl g EA= H-ﬂ weset o'x)=fel:x =0}
We denote by IliZ;A; the subalgebra of A generated by
1A ix e A : o® (%) is finite } . Hence ITi%4 is a
(unitary) k-algebraand {4;:1 € I} is called the weak product
of the family . Notice that == {x;}ie; € A =[1;4; if
thereis suchthat {i el:x = 0orx = A1M }is finite.
If {4;:1 € I} is a family of monoid k-algebras, then so is for
the weak product ITiL;4; (see corollary 2.6).

Let L be a semilattice with a unit e :== 1% and let {M;:i € L}
be a sequence of monoids. We set
=L\ {e M = (M:ieLl) andA = [T~ kIM;].
Since k[M;] has a unit 1™ for anyi e L™, the algebra A~

ISSN: 2394-367X, Volume-2 Issue-3, November 2017

has a unit 14~ = (1Mi},_,- . We denote by k[M~,M.] the
subalgebras of A~ x k[ M.] generated by G~ UG®* where
G- = {{=x0) e A~ xklM_]: supp” (x)is finite }, and
GE={1% 0)eA xkIMJ]:Aek ands e M)
Also we identify the algabras A~ = k[ M.l and Iligp k[M;].

So
k[M-M,] € A x kI M,] —(ﬂl L_k[\{ xk[M,] = .

Finally for a poset P we denote by Max(P?} the set of maximal
elements of P

k[M;]

Lemma 2.4.Assume that {L.A}be a semilattice with a unit e
satisfies : (*) the set L, Max(L\ {e}) is finite.

Let {M;:i L} be a sequence of monoidsindexed by {L.A}. .
The k-algebra homomrphism fis an isomorphism from
K[Z2, M;] intok[M-M,].

Proof. Note that (*) implies

(t) every chain of L is finite, and

() for everyieL: if i=ze:=1k
is finite.

By Lemma 23 & K[EZ M;] — [l KMl is an
embedding. We show that k[M~,M,] = Rng(f) . We first
prove that Rng(f) = k[M~,M,] recall that. Recall that
(P1) for any £ € L: ifs € My then f; (s} =5, f(s) =1 for
i<fandfl(s) =0forit £

Let M~ =U M-, properties (*) and (#) of L and (P1)
implies that f(s)eG~ for any s € M~. Hence:

(P2) fiM~yc 6™ & k[M-.M,].

For each £ € L and s € M; we set & = {s;};z; € [licp KIM;]
where 5; = 5 and s; = 0 otherwise. We show the following
fact:

(**) For every £ € L™and s € M; there is x, & k[M~,M_]
such that f(x,) = 5.

By contradiction, suppose that for some £ € L™ and s € Mg,
ther is no x, e k[M-,M_] such that flx;) =5 . Let
g ={iel:i=4#. Sincef €L by (}),e% is finite. By
(*), we may assume that € is minimal with respect to this
property. Let ie o< . We choose tj €M; . Hence
fi(t) = 1™ and by minimality of £, let x' € k[M] such
that flx) =1M et v = X peex' .So y € K[M~,M,],
and F0) =150 for any i< £ and Fly) = oD
otherwise. Let x =s—y . We have xek[M-,M,],
Flx) =sand Flx) =05 for 122, So xi=x is as
required in (**). )

Lets e M,.By(P1), fi(s) =s and F(s) = 1F™M for i = @,
By (*),R =LY Max(L\ {e}) is finite. By (**), for each
£ € R there is y; € k[M~,M,] such that f(y;) = 1™ et
vy=1Zsryand z=s5—y . Then v,z k[M~,M,] and
Flz) =014 shecc k[M-M,] . Since s=y+z,
F(s) & k[M~,M,]and thus

(P3) F(Me) £ K[MM,].

Since M generates the algebra k[ M1, it follows from (P2)
and (P3) that:

thenfjeL:j=<i}
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(P4) Rng () < k[M~,M,]

Next we prove k[#M~,M,] € Rng (). We have seen that for
every seM, there is zek[M~,M.] such that
Flz) = (1% ,5) € G%. Hence:

(P5) G* = Rng(f).

Let B be the subalgebra of Ilicp KIM;] generated by
[f:5€ M7}, Trivially G~ € E. By (**), for any s € M~
there is x, & k[M~,M_] such that f(x;) = 5. So

(P6) G~ = B = Rng(f).

Now k[#f-,M,] € Rng (f) follows from (P5) and (P6). So f
is a k-algebraic isomorphism between k[M] and
[ K M),

We apply the above result to the products of algebras.
Corrollary 2.5. Let L be a finite semilattice and {M;:i € L}
be a sequence of monoids. Then the algebras K[Z2, M;] and
[Tizr KIM;] are isomorphic.

Proof. Let e be the unit of L. It is obvious that
k[M-,M.] = [T,  K[M;]. Now the result follows from
Lemma 2.4.

We extend Corollary 2.5. for weak product of k-algebras over
monoids. The proof uses the first part of 2.4.

Corrollary 2.6. Let {4;:i€ 1) be a sequence of unitary
k-algebras over monoids. Then the weak product [T} 4; isa
unitary k-algebra over a monoid.

Proof. First if | is finite, the result follows from proposition

2.5. So we may assume that | is infinite. We choose iy € 1
and we add anewelementi*tol. LetI* =1 U {i*] Let<be
the order relation defined on I[*byi,=i=i* for
everyi € I {i;}. Soiand i'are incomparable for distinct
i eIy {ig}, and I* is a semilattice with i* as unit. For
each i 1, let M; be a monoid such that 4; = K[M;]. Also let
Mi—:={e} Notice that k[M;=] =ke. We set M == I, M;
and M* =EX2, M;=. So M is a (non-unitary) monoid and
M*=MWUI{el isamonoid with e as unit.
Let M = {M;:i € L). It suffices to show that [T, K[M;] and
k[#-.M:+] are isomorphic. Let g:k[M~, M~]— 4
defined by g{{x. Ae}) = x + 11* Since 6~ NGE={0}, g
is a k-algebra monomorphism. So it suffices to verify that
Rng (g) =TT, 4, but this is trivial.

Example 2.7. (1) LetL = 2:={0,1} with 0 < 1. That is
{2, .}is the semilattice where . is the usual multiplication.
Let My and M, be unitary monoids,M = ZZ_M; and f be
the isomorphism from k[M] onto k[M;] x k[M,] defined in
the proof of Proposition 2.5 Then k[M] for u e M, and
flv) = (1Mo, v) for € M; . Also notice that 1* = 1M: and
that f(1M) = (1M, 1M:),

In particular the product of rings of polynomials k[X] = k[Y]
is an algebra over a monoid.

(2) From Corollary 2.5, it follows that for a finite semilattice
L and a sequence of monoids {Mjzie L} , we have
K[E2, M) = H[Eﬁm M;]  where n=IL] and
n={0,1,...n —1} is considered as a semilattice (with
j1=jiffj <),

In particular, for any field k and any finite semilattice L, the
algebras k[L] and k" are isomorphic, where n=IL| .

Indeed, fori=<n let M; = {1} Then L= ZZ, M; , and

by Corollary 25 and thus
l-:[L] = k[TF M) 2 k[EE ;] = M, kD] 2k
semilatice).

(3) Characterize the field k and the semilattice L such that
the weak product I3 4; of family(4;:i € L}.of unitary
k-algebras over monoids is also a k-algebra over a monoid.
3 Free k-algabras over a quasi-mnoid

We recall that a quasi-monoid k-algebra k[#] is an algebra
such that M is k-basis that satisfy :

(f) for every s,t e M: if st =0 thenste M (trivially
0 e M).

Let DM = {{u v} e M %uv = 0} . DM ¥ isa
partial operation on M satlsfylng the followmg properties.
(Qp) Forany(wv)e DM uv e i,

(Q.) For any {wv} € D" (vu) e DM anduv =viu

(Q.) There is 1 € M such that {1,u} e D™ and Lu=u
for any € M .

(Q:) For any ,vowel ; if {(vwwheD® and
{wv.w) € DY then (wv)e DM , luvwhe pH and
L, {V.‘."I.’:] = '::L'I..V:I.".‘I.'.

A structure (M,.) satisfying (Qg) — (Qz) is called a

quasi-monoid . We denote - by - . We define the k-algebra
A over M as follows. The set M is a basis of the k-vector
space 4. Next we define the multiplication * on M by
ufv=uMy jf (uv)e DM and u-Av=0* otherwise.
By bilinearity, “* is is extendable in multiplication on A.
Hence 4 is quasi-monoid algebra and A = k[] .
The universal propriety of algebras over quasi-monoids,
corresponding to 2.1, is the following.
Claim 3.1. Let M be a quasi-monoid. 4 be a k-algebra and So
: M- A be a function

satlsfylngﬁi 0M) = 04, 1) = 14 and for any s,t € I: : if
st € M then fls)f(t) = f{st) .Then f is extendable in a
unique algebra homomorphism £ k[#] — 4 .

We define [Ti;M; and £, M; for quasi-monoids , as it
was done for monoids . Let (M;:ieI}be a family of

quasi-monoids.  Then the product quasi-monoid
M = [T M; exists with the operation
() My = (& Migl), (ifs' Myl exists for every i) and
1M = {1}, . Then weak product IT}{;M; denotes the

sub-quasi-monoids of M consisting of = = {x'}; satisfying
o) =fiel: xl = 1M]is finite .

Let L be a monoid and {M;:i € L} be a sequence of
quasi-monoids. We asumme that the M; ‘s are pairwise
disjoint . We denote by £2; M; the following structure : the
universe of Z2; M; is M = U.EL‘L , and the operation .M
on ZZ M; is defined as follows . For s € M; and t & M; with
JeLl weset:

sMp= Mg ifi=jand sMit exists,
sMi=tMs ifij=iandi=i
sMt =t =tMs ifij=jandi =],

sMe=1M =tM: ifij=kandizjz k=i
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The structure M :=ZXZ M; is called the L-sum of
sequence (M; :i € L} of quasi-monoids . It is easy to check
that M isa quasi-monoid.

The proof of the next result is left to the reader .
Proposition 3.2. Let {M,:i e I} be a family of quasi-monoids.
For every commutative k-algebra I' and for any sequence of
k-algebra homorphisms f:k[f;] =D such that
£ (0d8]) = P for 1 & I and £ (1¥™]) = 1D for 11, there
is a unique k-algebra homomorphism £: k[#;] — D such
that f; = £= 1] for 1 & 1(1] is defined after proposition 2.1.)

I1l. APPLICATIONS

4.0 Upper-lattice algebras

First we recall the notion of upper-lattice algebra developed
by Bekkali and Zhani in [BZ1, BZ2] and after we shall apply
the results of section 2 to that class that is exactly the class of
algebras over semi groups (semi-group algebras). Moreover,
our work implies the same results to free poset algebras P(P)
(which are upper semi lattices by theorem 4.9).

Let T be an upper semi-lattice i.e. every pair {p,q} of
members of T has a least upper bound pvq. Let T be an
upper-semi lattice with a first element 07. Fort € T, we set
by =[t—=)={ueTuzt) LetGyr={b, € P(Tht e T}
The subalgebra B(T) of P(T) is called the upper-lattice
algebra over T. Notice that Gy is a unitary semi lattice

generated B(T) and 18™ =5 .

Proposition 4. 1. Let B be a Boolean algebra. The following
properties are equivalent.

(1) B is a Boolean algebra over a unitary semilattice.

(2) B is an upper-lattice algebra.
Proof. (1) = (2). Suppose that B = F,[N]. For w.v € N,
set u=v if uwv =v. So (N.<) is a unitary semilattice
{uAv =ur) withalast element 1¥.Let {T. =} = (N. =} is
a join unitary semilattice (uv™ vi=wur) with a least
element 1¥. For t T, seth, = [t =) = fue T:u =" ],
let Gy = {b, € P(T):t € T}. Notice that B(T) is an upper
—lattice algebra. It is easy to check that x + by from M onto
Gr is extendable in an isomorphism from F;[N]to B(TJ.
(2) = (1). Let B(T) be an upper-lattice algebra. Recall that
Gt is an unitary semilattice generating 0B g G, and that
180 -7 = byr. So it suffices to prove that Gy is a linear
independent set over F;. This is a consequence of the
following general result, that will be also applied in
Proposition 5.1, for completeness, we recall the proof of this
fact.

Fact 4.2 Let S be a poset and A be a subalgebra of P{5}. So
Aisa F;-ring. Let {z;: 1 < m}be a finite sequence of pairwise
distinct non-zero elements of A. Suppose that for every
i<z m, 3 has a first element 5; = min(g;}, and ifi =] < m
then s; = s;. Then {3;:f < m) are F;-independent.

Proof. We prove this fact by induction on m. If m=0 then
ap = 0. Next, suppose that the lemma holds for m —1.
Suppose that Fiem3i. We shall find a contradiction. Recall
thate + & =0 iff a =b. We may assume that sp_;is a
minimal  element of {s:i=m} . We have
o= Gm_1=Ei{m_13i and (*) RS min{a:] = Sm-1 & 5
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for i<m—1. Since sea , let j<m—1 such that
sea; .Since s; = min(s) , s; < s. Since j=m—1, by
hypothesis, s; = s, and thus s; < s that contradicts (*). We

have proved the fact.

A Boolean algebra B is called a Boolean algebra over a

unitary semilattice M if B is isomorphic to F;[M] where M is

a monoid. Notice that such a M must be unitary semilattice

(since x* = x). As a consequence of the above section2, we

have the following result on Boolean algebras.

Proposition 4. 3.

(1) Let M bean unitary semi-lattice, A be a Boolean algebra
and £M— A be such that f{1M) =14 and
f(st) = f(s)f(t) for s, te M. Then f is extendable in a
Boolean homomorphism from E;[M] into A.

(2) Let {M;:i € I} be a family of unitary semilattices. Then

(@) Ilie; M; and [T, M; are unitary semilattices.

(b) The tensor product (that is called the free product)
®;F2[M] is the Boolean algebra over the unitary
semilatticel I}z; M; .

(3) Theclass of algebras over unitary semi-lattices is closed
under weak product, and thus under finite products.

(4) Any Boolean algebra is a homomorphic image of an
algebra over a unitary semi-lattice.

Proof. (1) is an application of Proposition 2.1. (2a) is easy
and (2b) follows from Proposition 2.2(a). (3) is a special case
of Propositions 2.5 and 2.6. (4) follows from the proof of
Proposition 2.2(b), considering the monoid M, = {1=,a}
with a* = a for any member a of M,.
Remark4.4. In [BZ1, theorem 3.10], actually, there is a
normal form of the fact that an upper-lattice algebra has a
basis of non zero elements using symmetric difference, &.
The same normal form holds in semi group algebra and free
poset algebras, see [BZ2]. Moreover, notice that algebras
over semigroups or semigroup algebras, as we usually call
them, have a neat characterization by theorem 4.9. as well as
free poset algebras by theorem 4.8. For the complete proofs
and discussions of these theorems, see [BZ1, BZ2]. In this
paper, theorems 4.4, 4.5, 4.7 and 4.10 are the connection
between upper semi-lattices, semi group algebras and free
poset algebras by their different representations showing how
actually these algebras are built up from inside.

Notice that all the above results (1)-(4) hold when we
consider a commutative field k of characteristic 2 instead of
F,.

Theorem 4.5. The following statements are equivalent for
any Boolean algebra B.

1. B is isomorphic to an upper semi-lattice algebra.

2. B is generated by HEE so that 0&H, H is
disjunctive, containing 1 and closed under
multiplication.

Next theorem characterizes Jd (T} (the set of ideals of T), for
any upper semi-lattice (T, =}, see [BZ1]. Let B be a Boolean
algebra and set Uit (B its stone space.

Theorem 4.6. The following statements are equivalent.

1. Bis isomorphic to B(T7, where (T. =} is an upper
semi-lattice, with least element.
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2. Xis homeomorphic to J2(T7}, the set of ideals of an
upper semi-lattice T with a least element, endowed
with Tychonoff’s topology inherited from 27

3. Xishomeomorphicto F{57, the set of filters over S,
where S is a unitary semi-lattice, endowed with
Tychonoff’s topology inherited from 2°.

4. There is a multiplication . on X so that (X..]) is a
unitary semi-lattice and °.” Is a continous mapping
on X x X (i.e. (x,y) — x.¥ is continuous).

5. At this stage notice that algebras over semigroup,
have a neat characterization by theorem 4.9. as well
as free poset algebras by theorem 4.8. For the
complete proofs and discussions of these theorems,
see [BZ1, BZ2].

5.1 Free poset algebras

Let (P.=) be a poset. A free poset algebra over P is a

Boolean algebra A having P as set of generators such

that:

(1) » =5 gimpliesp =4 g,
(2) For every BA B and every mapping f:F — E| if

© =z g implies that f{#} = f(g), then there is

a homomorphism g: 4 — E such

that g I F = f. Note that for P a poset

consisting of isolated elements, that is with

= the identity, a free poset algebra is just a free

Boolean algebra over P. In particular, if P is

infinite, then this algebra is atomless.
For any poset P, a final segment of P is a subset M of P such
thatif p € M and p = g , then also g M. For any poset P,
Fs(F is the collection of all final segment of P. Note that &
is a final segment of P.
Proposotion 4.7. Suppose that P is a poset, then Fs(F} is a
closed subspace of P. Moreover, clop(Fs(P)7 is a free poset
algebra on P.
Proposition 4.8. Every poset algebra is a semigroup algebra.
Let P be a psoet. An antichain in P is a collection of pairwise
incomparable elements of P. Ant (Pis the set of all finite
antichains of P. Note that @ € Ant (P}, and{p} Ant (F]) for
all # € P. We define a relation = on Ant (P} by:

g5 TeVYpeoiget(g =p)

Theorem 4.9. Let P be a poset, Then:
1. (Ant(P).=) is an upper semi-lattice.
2. For each p € P let f{p) = {p}. Then f is an order
anti-isomorphism of P into Ant (P,
3. Tail(Ant(P)) is isomorphic t 0 a free poset algebra
over P.
4.2.Semi-group algebras
The following theorem gives a concrete construction of
semi-group algebras. For, let (M.~} be an idempotent
semi-lattice with 0 andl, and let A be the free Boolean
algebra with generators x, for € M | and let | be the ideal

generated by the set
{{_rp_xq}ﬂxmq:p, ge M}

Theorem 4.10. (D. Monk).
i.4 /1 isasemi-group algebra;
ii. Every semi-group algebra is isomorphic to some 4 /1
as above;
iii. The Stone space Uit{4 / I} is homomorphic to F({5},
where (5.4} is a unitary meet semi-lattice.

Corrollary 4.11. Every semi-group algebra is isomorphic to
an upper semi-lattice algebra as well as any pseudo-tree
algebra with a single root.

Proof. By (iii.) in Theorem 4.4. we have the first part of the
statement; now if (T.<} is a pseudo tree, then H = {b.:
te T} U {0generates E(T). Notice, definition 1.2, that E(T")
is a semigroup algebra and thus it is an upper semi-lattice by
Theorem 4.9.

5 Algebras over unitary quasi-semilattices: quasi
upper-lattice Boolean algebra

If k = F; and if the unitary quasi-semilattice H, then F,[H]
is called an algebra over an unitary semilattice or semi-ring
algebra. The study of semi-ring algebras was initied by
Heindorf [H1, H2] and Evan [E]. We define the notion of
quasi-upper-lattice  algebra. A poset T is a
quasi-upper-semilattice if

(1) for every p.q € P if {p.q} has an upper bound then
{p.q} has a least upper bound pv q

Let T be a quasi-upper-semilattice with a first element 07 .
For t €T , let by=[t=)={ueTuz=" . Let
Gy = {b, € P(T):t € T} The subalgebra B(T) of P(T)
generated by Gy is called the quasi-upper-lattice algebra
over T. Notice that Gr is an unitary quasi-semilattice
generating B(T) and that 18™ =T = b7,

Proposition 5.1. Let B be a Boolean algebra. The following
properties are equivalents.

i. B is an algebra over a quasi-monoid.

ii. B is a quasi-upper-lattice algebra.
Proof. The proof is similar to that of proposition 4.1.

(i) & ().

Next, we translate Proposition 3.2 in terms of
quasi-upper-lattice algebras.

Proposition 5.2. Let (T:iel}) be a family of

quasi-upper-lattices.

(1)For every commutative quasi-upper-lattice algebra
B(T) and for any sequence of Boolean
homomorphisms  f;:B(T;} — B(T) such that
f{lﬂ':':}:'} — 15':':':' and f{uﬂ':':}:'} — UE':T' for £ € I,
there is a unique Boolean homomorphism
F:BIY, T,) — B(T) such that f=F=i; for
£el

(2)The Boolean algebras B{IT}L; T;) and @, B(M;) are
(canonically) isomorphic.

(3)The class of Boolean  algebras  over
quasi-upper-lattices is closed under finite product.
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