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Abstract: Algebras as, free algebras over posets, upper-lattice 

Boolean algebras and semigroup algebras can be viewed as 

F2-algebras over a monoid or a quasi-monoid. This paper deals 

with this notion. 

Index Terms: Monoid algebras, quasi-monoid algebras, 

Boolean algebras, Tail algebras, upper-lattice algebras, free 

algebras over posets, interval algebras. 

I. INTRODUCTION 

In the theory of Boolean algebras, see for 

instance , generally we consider a Boolean algebra  

as a Boolean lattice where is a 

distributive lattice with a first element  and a last element 1, 

and each member   has a unique complement ,  that 

is  and   . But we can see a 

Boolean algebra as a structure of the form , 

where  is the symmetric 

difference and  x· y = x∧y is an algebra over the field 

, see L. Heindorf [H1] and E. Evans [E].  

The scope of this work is: To extend all their results in the 

context of k-algebras, see for example [H1], [E] and to 

establish some properties of algebras over monoid (or semi 

group algebras) as algebras then derive some concrete 

representations ( free poset algebras R. Bonnet and M. Rubin 

[BR], R.  Bonnet, L. Faouzi and W. Kubis [BLK],  R.  

Bonnet, U. Abraham, W. Kubi´s and M. Rubin [BAKR], 

upper semi lattice algebras M. Bekkali and D. Zhani 

[BZ1,BZ2], I. Chakir and M. Pouzet [CP]), see J. D. Monk 

[Monk]. This is possible since in these algebras over monoid 

there is a normal form of non zero elements which makes it 

easy to look at them as algebra over the 

field  see M. Bekkali and D. Zhani 

[BZ1,BZ2]. It has to be noticed that the Boolean algebraic 

character remains hidden since the use of complement in 

these structures stands out for itself. Precise statements of 

relevant theorems needed for this paper is at the end of the 

article. 

On the other hand, the class of quasi-monoid k-algebras is 

studied; one classical example of monoid k-algebra is the 

ring of polynomials k[X], which is the k-algebra over the 

monoid . 

At the end, . we study the special examples developed by 

Heindorf [H1] and Evans [E], which are called semi-ring 

algebras or quasi-upper-lattice algebras, that are Boolean 

algebras of the form  where  is a quasi-monoid. 
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These examples were initiated by Koppelberg and Monk 

[KM], developed by Heindorf [H1], Evans in [E] and by 

Bekkali and Zhani in [BZ1,BZ2]. 

 

Recall the definition of a disjunctive set. 

Definition 1.1. A subset H of a Boolean algebra A is 

disjunctive whenever: 

(1) 0 is not in H; 

(2) If are in H with n > 0 and , 

then  for some i. 

Definition 1.2. A Boolean algebra A is a semi-group algebra 

whenever it is generated by a set H which has the following 

properties: 

(1)  

(2) H is closed under multiplication 

(3)   is disjunctive. 

 

Notice the reminiscent similarity in this definition and the 

definition of a basis, below, in . Moreover, elementary  

properties  of  semigroup  algebras are found in Chapter 2 of 

cardinal functions book [Monk]. The notion was introduced 

by Heindorf in Fundamenta vol. 135, pp. 37 − 47. 

Now, in what follows, k denotes a commutative field, M , N , 

L, etc. denote monoids. Recall that a monoid (also called 

semigroup) is a set (M ; ·) with ” · ” is commutative, 

associative and has a unit denoted by  . We shall denote 

  by  or more simply by xy, and x(yz) = (xy)z by xyz. 

Now, recall that (S; ·) is called a semi-lattice whenever ” · ” 

is commutative, associative,  and  for all x ∈ S; the 

binary operation · denoted by ∧ satisfies   whenever 

. Hence, a semi-lattice (S, ·), with a greatest 

element, is a monoid. 

Next, let k, M be a field and a monoid respectively. The 

k-algebra over M , denoted by , may be defined as 

follows: Consider the k-vector space  having M as 

k-basis. Now the multiplication · on M, extended by 

biliearity, induces a structure on  of k-algebra.  This 

algebra, denoted by  is called the k-algebra over the 

monoid M . For instance, a construction may be achieved as 

follows: Denote by the subspace of   consisting of all 

 such that   is finite.  Hence 

the canonical basis of is  where 

  where   and for .  

The multiplication of   is defined by  

extended by bilinearity: see [Bo, Ch III, §2.6]), [L, Ch 5, §1] 

and [R, §1.2]. 
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The algebra   is denoted by , and for simplicity, we 

identify s and . Notice that, 

(†)  M  is basis of the algebra  and M  is closed under 

product. 

In particular for . 

Note that  is a unitary commutative algebra (the 

unit  of  is ). A monoid algebra is a k-algebra 

over some monoid. A well-known example of monoid 

k-algebra is the algebra of polynomials.  Indeed, for a given 

set I, is the k-algebra over .  Another example 

is the product of two rings of polynomials is an 

algebra over a monoid. 

The notion of quasi-monoid k-algebras is defined as follows 

and generalizes the notion introduced by Heindorf [H1] and 

Evans [E] in the context of Boolean algebras.   For, let A be 

a unitary k-algebra.   Suppose that    A  has  a  basis  such  

that  is  a  multiplicative  unitary  monoid  and 

First, remark that satisfies the following 

property:  

 
 

Notice that the following universal property holds too: 

 

Proposition  1.3.  Let  C  be  a  k-algebra  and    be  a  

function satisfying ,       and for any  
 if  then . Then f is 

extendable in a unique algebra homomorphism . 

 

The algebra A is called the quasi-monoid k-algebra (over   ) and 

A is denoted by  .  Hence, 

 

Claim 1.4.  Every monoid algebra is a quasi-monoid 

algebra.  

The converse is not true, to see this consider  

.  Then A is a quasi-monoid algebra that  is  

not  a monoid-algebra  over  k. Indeed   ] where    

 and  in A.  But there is no monoid M such 

that .  Otherwise if such a M exists, 

then   and thus M contains only  another one 

element T . Hence  or  1,  with . 

This implies that either  or .  A contradiction. 

II. FREE K-ALGEBRAS OVER A MONOID OR A 

QUASI-MONOID 

We  begin by stating well-known results2.1and2.2on 

monoid  algebras. 

 

Proposition 2.1.  

(a) Let  M be a monoid, A   be  a  k-algebra  and    be  a  

function satisfying        and  for any  
 .Then f is extendable in a unique algebra 

homomorphism .   

(b) Let M and N be two monoids and   be a 

monoid’s homomorphism  such              that  Then * is 

extendable in a unique algebra homomorphism  

 satisfying 

and . 

Moreover ; 

i. If     is one-to-one then     is one-to-one, and 

ii. If        onto then     is onto 

Let   be a family of monoids. Then the product   

monoid     exists with the operation 

   and    . Then the 

weak product   enotes the submonoid of   

consisting of  satisfying is  

 is finite.  Let   be the 

canonical monoid embedding defined by   and   

 for  

  for .  By proposition 2.1,  
 
is extendable in a 

unique algebra homomorphism  . 

The following fact shows that  is the tensor 

product (also called “free product”) of the family 

. [J, §3.7], Also Part (b) follows from Part (a). 

Proposition 2.2. 

(a) Let   be a family of monoids. For 

every commutative k-algebra D and for any 

sequence of k-algebra homomorphism 

  such that   for 

  , there is a unique k-algebra 

homomorphism    such 

that   for  . Hence  is 

the tensor product  of the 

family   in the category of 

k-algebras. 

(b) Any k-algebra is an algebra homomorphic 

image of   for some monoid M. 

To prove that the class of algebras over monoids is closed 

under finite product, we extend the “lexicographic sum of 

posets indexed by a poset” in the following way.   Let (L, ∧) be 

a semilattice, and let    be a sequence of monoids.  

We assume that the  ‘s are pairwise disjoint. We define a 

monoid .The universe of    is M:= .  

We shall define an operation  on M. For   , let 

 be the identity and for   let   

be defined as   for any  so for  

we have   and each is a monoid 

homomorphism that preserves the unit. For , let 

 be such  and  and we set 

  

It is easy to check that  is a monoid (the unit is  

where e is the unit of L ). The structure is called 

the L-sum of the sequence  of monoids. Notice 

that the direct sum  is trivial: if L has a 

smallest element 0 then and 

 otherwise. Also  is defined in a more 

explicit way as follows. For   and   We shall 
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We shall construct a homomorphism 

. We denote  by M. 

Recall that  where  e is the unit of L. For  , let 

 defined as follows:  

 

 
 

Recall that for any . Notice that 

. Obviously  for every 

. By proposition 2.1,  is extendable in an unique 

k-algebra homomorphism . Let 

 defined by 

 for . Since each  is a 

homomorphism,  is a k-algebra homomorphism. The next 

lemma will be used to prove that the class of algebras over 

monoids is closed under finite products and weak product.  

 

Lemma 2.3. Assume that    be a semilattice and 

  be a sequence of monoids. Then  is a k- algebra 

embedding from into . 

Proof. Since  is a basis of the  k-vector space   , for 

any non-zero  ,tere are an unique finite subset   of   

and for each   an unique finite subset 

  and  an unique finite sequence of 

non-zeroscalar  such that 

 

    Let  be such that   that is  for 

every . By contradiction, suppose that   . Let    be 

a maximal element of   and  . By the 

definition, we have  

 
and  . From the choice of   and   the definition   of 

  , it follows that: 

                

Since the     are k-linearly independent,     for   

ever     . A  contradiction. So .                                                                                                                    

         

Let         be a sequence of unitary k-algebras. For  

  we set       . 

We denote by     the subalgebra of A generated by  

    . Hence  is a 

(unitary) k-algebra and    is called the weak product 

of the family     . Notice that     if 

there is   such that      is finite. 

If  is a family of monoid k-algebras, then so is for 

the weak product    (see corollary 2.6). 

Let L be a semilattice with a unit    and let   

be a sequence of monoids. We set  

   and . 

Since   has a unit   for any , the algebra    

has a unit   . We denote by     the 

subalgebras of    generated by  where  

        , and  

        . 

Also we identify the algabras    and  . 

So  

 
Finally for a poset  we denote by  the set of maximal 

elements of   

 

Lemma 2.4.Assume that be a semilattice with a unit e 

satisfies : (*) the set  is finite. 

Let  be a sequence of monoidsindexed by . . 

The  k-algebra homomrphism   is an isomorphism from  

  into . 

 

Proof. Note that (*) implies 

 

(  every chain of   is finite, and   

(  for every : if       then     

is finite. 

By Lemma 2.3    is an 

embedding. We show that  . We first 

prove that    recall that. Recall that  

(P1)  for any : if  then ,  for 

 and  for . 

Let , properties (*) and  of  L and (P1) 

implies that  for any . Hence:  

(P2)  . 

For each  and  we set  

where  and  otherwise. We show the following 

fact: 

(**) For every and  there is   

such that . 

By contradiction, suppose that for some  and , 

ther is no such that . Let 

. Since , by ( ,   is finite. By 

(*), we may assume that  is minimal with respect to this 

property. Let . We choose . Hence 

, and by minimality of  , let  such 

that . Let .So , 

and  for any  and  

otherwise. Let . We have ,  

 and  for . So  is as 

required in (**). 

Let . By (P1),  and  for . 

By (*),  is finite. By (**), for each 

 there is  such that Let 

and  . Then  and 

. Since s , 

and thus  

(P3) . 

Since M generates the algebra , it follows from (P2) 

and (P3) that:  
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(P4)  

Next we prove . We have seen that for 

every there is  such that 

. Hence:  

(P5) . 

Let B be the subalgebra of  generated by 

. Trivially . By (**), for any  

there is  such that . So 

 (P6) . 

Now  follows from (P5) and (P6). So  

is a k-algebraic isomorphism between  and 

. 

 

We apply the above result to the products of algebras. 

Corrollary 2.5.  Let L be a finite semilattice and  

be a sequence of monoids. Then the algebras  and 

 are isomorphic. 

Proof. Let e be the unit of L. It is obvious that 

. Now the result follows from 

Lemma 2.4. 

We extend Corollary 2.5. for weak product of k-algebras over 

monoids. The proof uses the first part of 2.4. 

 

Corrollary 2.6. Let  be a sequence of unitary 

k-algebras over monoids. Then the weak product  is a 

unitary k-algebra over a monoid. 

    Proof. First if I is finite, the result follows from proposition 

2.5. So we may assume that I is infinite. We choose  

and  we add a new element  to I. Let . Let < be 

the order relation defined on  for 

every . So  and   are incomparable for distinct 

, and  is a semilattice with as unit. For 

each  , let  be a monoid such that . Also let 

:={e}. Notice that . We set  

and . So M is a (non-unitary) monoid and 

 is a monoid with e as unit. 

Let . It suffices to show that  and 

 are isomorphic. Let   

defined by . Since ,  

is a k-algebra monomorphism. So it suffices to verify that 

, but this is trivial. 

 

Example 2.7. (1) Let   with . That is 

 is the semilattice where . is the usual multiplication. 

Let  and  be unitary monoids,  and  be 

the isomorphism from  onto   defined in 

the proof of Proposition 2.5 Then  for   and 

 for  . Also notice that  and 

that . 

In particular the product of rings of polynomials  

is an algebra over a monoid. 

(2) From Corollary 2.5, it follows that for a finite semilattice 

 and a sequence of monoids , we have 

where   and 

 is considered as a semilattice (with 

). 

In particular, for any field  and any finite semilattice , the 

algebras  and  are isomorphic, where  . 

Indeed,  for   let    Then   , and 

by Corollary 2.5 and thus 

. 

semilatice). 

(3) Characterize the field  and the semilattice  such that 

the weak product   of family .of unitary 

k-algebras over monoids is also a k-algebra over a monoid. 

3  Free k-algabras over a quasi-mnoid 

We recall that a quasi-monoid k-algebra  is an algebra 

such that  is k-basis that satisfy : 

 for every if    then  (trivially 

). 

Let   . So . :    is a 

partial operation on   satisfying the following properties.  

  For any  

 For any  and  

 There is   such that  and   

for any  .   

   For any  ; if  and 

 then ,    and 

 

A structure  satisfying   is called a 

quasi-monoid . We denote   by   . We define the k-algebra 

 over  as follows. The set  is a basis of the k-vector 

space . Next we define the multiplication  on  by 

  if  and  otherwise. 

By bilinearity,  is is extendable in multiplication on . 

Hence  is quasi-monoid  algebra  and   . 

The universal propriety of algebras over quasi-monoids, 

corresponding to 2.1, is the following. 

Claim 3.1. Let  be a quasi-monoid.  be a k-algebra and So 

. :   be a function 

satisfying  and for any   : if 

 then  .Then  is extendable in a 

unique algebra homomorphism  . 

    We define  and  for quasi-monoids , as it 

was done for monoids . Let  be a family of 

quasi-monoids. Then the product quasi-monoid 

 exists with the operation 

  (if  exists for every ) and 

. Then weak product  denotes the 

sub-quasi-monoids of  consisting of   satisfying 

 is finite . 

   Let    be a monoid and   be a sequence of 

quasi-monoids. We asumme that the ‘s are pairwise 

disjoint . We denote by  the following structure : the 

universe of  is  , and the operation   

on  is defined as follows . For  and  with 

 , we set : 
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The structure  is called the L-sum of 

sequence   of quasi-monoids . It is easy to check 

that    is a quasi-monoid. 

   The proof of the next result is left to the reader . 

Proposition 3.2. Let  be a family of quasi-monoids. 

For every commutative k-algebra  and for any sequence of  

k-algebra homorphisms   such that 

 for  and  for  , there 

is a unique k-algebra homomorphism  such  

that  for .(  is defined after proposition 2.1.)  

III. APPLICATIONS 

 

4.0 Upper-lattice algebras 

First  we recall the notion of upper-lattice algebra developed 

by Bekkali and Zhani in [BZ1, BZ2] and after we shall apply 

the results of section 2 to that class that is exactly the class of 

algebras over semi groups (semi-group algebras). Moreover, 

our work implies the same results to free poset algebras P(P) 

(which are upper semi lattices by theorem 4.9). 

Let T be an upper semi-lattice i.e. every pair {p,q} of 

members of T has a least upper bound p∨q. Let T be an 

upper-semi lattice with a first element . For , we set 

. Let . 

The subalgebra of  is called the upper-lattice 

algebra over T. Notice that is a unitary semi lattice 

generated  and  . 

 

Proposition 4. 1. Let B be a Boolean algebra. The following 

properties are equivalent. 

(1) B is a Boolean algebra over a unitary semilattice. 

(2) B is an upper-lattice algebra. 

Proof.  . Suppose that . For , 

set  if . So  is a unitary semilattice 

  with a last element .Let  is 

a join unitary semilattice  with a least 

element . For , set , 

let . Notice that  is an upper 

–lattice algebra. It is easy to check that  from M onto 

 is extendable in an isomorphism from to .  

. Let  be an upper-lattice algebra. Recall that 

 is an unitary semilattice generating  , and that 

. So it suffices to prove that  is a linear 

independent set over . This is a consequence of the 

following general result, that will be also applied in 

Proposition 5.1, for completeness, we recall the proof of this 

fact. 

 

Fact 4.2 Let S be a poset and A be a subalgebra of  . So 

A is a -ring. Let be a finite sequence of pairwise 

distinct non-zero elements of A. Suppose that for every 

,  has a first element , and if  

then . Then  are -independent. 

Proof. We prove this fact by induction on m. If m=0 then 

. Next, suppose that the lemma holds for . 

Suppose that . We shall find a contradiction. Recall 

that  iff  . We may assume that  is a 

minimal element of . We have 

 and (*) :  

for . Since  , let  such that 

.Since , Since , by 

hypothesis, , and thus  that contradicts (*). We 

have proved the fact. 

 

A Boolean algebra B is called a Boolean algebra over a 

unitary semilattice M if B is isomorphic to  where M is 

a monoid. Notice that such a M must be unitary semilattice 

(since ). As a consequence of the above section2, we 

have the following result on Boolean algebras. 

Proposition 4. 3.  

(1) Let M be an unitary semi-lattice, A be a Boolean algebra 

and  be such that and 

 for . Then  is extendable in a 

Boolean homomorphism from  into . 

(2) Let  be a family of unitary semilattices. Then  

(a)  and  are unitary semilattices. 

(b) The tensor product (that is called the free product) 

 is the Boolean algebra over the unitary 

semilattice . 

(3) The class of algebras over unitary semi-lattices is closed 

under weak product, and thus under finite products. 

(4) Any Boolean algebra is a homomorphic image of an 

algebra over a unitary semi-lattice. 

Proof. (1) is an application of Proposition 2.1. (2a) is easy 

and (2b) follows from Proposition 2.2(a). (3) is a special case 

of Propositions 2.5 and 2.6. (4) follows from the proof of 

Proposition 2.2(b), considering the monoid  

with  for any member a of . 

Remark4.4. In [BZ1, theorem 3.10], actually, there is a 

normal form of the fact that an upper-lattice algebra has a 

basis of non zero elements using symmetric difference, . 

The same normal form holds in semi group algebra and free 

poset algebras, see [BZ2]. Moreover, notice that algebras 

over semigroups or semigroup algebras, as we usually call 

them, have a neat characterization by theorem 4.9. as well as 

free poset algebras by theorem 4.8. For the complete proofs 

and discussions of these theorems, see [BZ1, BZ2]. In this 

paper, theorems 4.4, 4.5, 4.7 and 4.10 are the connection 

between upper semi-lattices, semi group algebras and free 

poset algebras by their different representations showing how 

actually these algebras are built up from inside. 

 

Notice that all the above results (1)-(4) hold when we 

consider a commutative field k of characteristic 2 instead of 

. 

Theorem 4.5. The following statements are equivalent for 

any Boolean algebra B. 

1. B is isomorphic to an upper semi-lattice algebra. 

2. B is generated by  so that ,  is 

disjunctive, containing 1 and closed under 

multiplication. 

Next theorem characterizes  ( the set of ideals of T), for 

any upper semi-lattice , see [BZ1]. Let B be a Boolean 

algebra and set  its stone space. 

Theorem 4.6. The following statements are equivalent. 

1. B is isomorphic to , where is an upper 

semi-lattice, with least element. 
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2. X is homeomorphic to , the set of ideals of an 

upper semi-lattice T with a least element, endowed 

with Tychonoff’s topology inherited from . 

3. X is homeomorphic to , the set of filters over S, 

where S is a unitary semi-lattice, endowed with 

Tychonoff’s topology inherited from . 

4. There is a multiplication ‘.’ on X so that  is a 

unitary semi-lattice and ‘.’ Is a continous mapping 

on  (i.e.  is continuous).  

5. At this stage notice that algebras over semigroup, 

have a neat characterization by theorem 4.9. as well 

as free poset algebras by theorem 4.8. For the 

complete proofs and discussions of these theorems, 

see [BZ1, BZ2]. 

5.1 Free poset algebras 

Let  be a poset. A free poset algebra over P is a 

Boolean algebra A having P as set of generators such 

that: 

(1) implies , 

(2) For every BA B and every mapping , if 

 implies that , then there is 

a homomorphism  such 

that . Note that for P a poset 

consisting of isolated elements, that is with 

the identity, a free poset algebra is just a free 

Boolean algebra over P. In particular, if P is 

infinite, then this algebra is atomless. 

For any poset P, a final segment of P is a subset M of P such 

that if  and  , then also q . For any poset P, 

 is the collection of all final segment of P. Note that  

is a final segment of P. 

Proposotion 4.7. Suppose that P is a poset, then  is a 

closed subspace of P. Moreover,  is a free poset 

algebra on P. 

Proposition 4.8. Every poset algebra is a semigroup algebra. 

Let P be a psoet. An antichain in P is a collection of pairwise 

incomparable elements of P. is the set of all finite 

antichains of P. Note that , and{p}  for 

all . We define a relation  on  by: 

 
  

Theorem 4.9. Let P be a poset, Then: 

1.   is an upper semi-lattice. 

2. For each  let . Then  is an order 

anti-isomorphism of P into . 

3.  is isomorphic t o a free poset algebra 

over P. 

4.2.Semi-group algebras 

The following theorem gives a concrete construction of 

semi-group algebras. For, let  be an idempotent 

semi-lattice with 0 and1, and let A be the free Boolean 

algebra with generators  for  , and let I be the ideal 

generated by the set  

 
 

Theorem 4.10. (D. Monk).  

i.  is a semi-group algebra; 

ii. Every semi-group algebra is isomorphic to some  

as above; 

iii. The Stone space  is homomorphic to , 

where  is a unitary meet semi-lattice. 

Corrollary 4.11. Every semi-group algebra is isomorphic to 

an upper semi-lattice algebra as well as any pseudo-tree 

algebra with a single root. 

Proof. By (iii.) in Theorem 4.4. we have the first part of the 

statement; now if  is a pseudo tree, then  

t generates . Notice, definition 1.2, that  

is a semigroup algebra and thus it is an upper semi-lattice by 

Theorem 4.9. 

 

5 Algebras over unitary quasi-semilattices: quasi 

upper-lattice Boolean algebra 

If  and if the unitary quasi-semilattice H, then  

is called an algebra over an unitary semilattice or semi-ring 

algebra. The study of semi-ring algebras was initied by 

Heindorf [H1, H2] and Evan [E]. We define the notion of 

quasi-upper-lattice algebra. A poset T is a 

quasi-upper-semilattice if  

(†) for every ,if  has an upper bound then 

  has a least upper bound  

Let T be a quasi-upper-semilattice with a first element . 

For t , let . Let 

 The subalgebra of  

generated by  is called the quasi-upper-lattice algebra 

over T. Notice that  is an unitary quasi-semilattice 

generating  and that .  

 

Proposition 5.1. Let B be a Boolean algebra. The following 

properties are equivalents. 

i. B is an algebra over a quasi-monoid. 

ii. B is a quasi-upper-lattice algebra. 

Proof. The proof is similar to that of proposition 4.1. 

. 

Next, we translate Proposition 3.2 in terms of 

quasi-upper-lattice algebras. 

Proposition 5.2. Let  be a family of 

quasi-upper-lattices. 

(1) For every commutative quasi-upper-lattice algebra 

 and for any sequence of Boolean 

homomorphisms  such that 

 and  for , 

there is a unique Boolean homomorphism 

 such that  for 

. 

(2) The Boolean algebras  and  are 

(canonically) isomorphic. 

(3) The class of Boolean algebras over 

quasi-upper-lattices is closed under finite product. 
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