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Stability Analysis of Discrete-Time Prey-Predator
Model with Harvesting Activity and Allee Effect
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Abstract- In this paper, the stability analysis of discrete-time
Prey-Predator model with harvesting activity in presence and
absence of Allee effect on prey population has been carried out.
Forward Euler method is applied to the continuous model to
obtain the discrete-time model. We discussed the stability
criterion of the discrete-time modd at the fixed points. Numerical
simulations have been carried out to show the dynamical
behavior of the model.
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I.INTRODUCTION
The Prey-Predator model is a topic of great intefes

In this paper, the stability analysis of discréteet Prey-
Predator model with harvesting activity in preserazel
absence of Allee effect on prey population has heried
out. In the first stage, Forward Euler method iplel to
continuous model with harvesting activity and withéllee
effect to obtain the discrete-time model. We disedsthe
stability criterion of the discrete-time model ated points.
At the second stage, similar analysis has beeredaout by
incorporating Allee effect on prey population. Nuioal
simulations have been carried out to show the dycalm
behavior of the model.

[I.MATHEMATICAL MODEL

many mathematicians and ecologists. Many reseazch&onsider a habitat where prey and predator spemies

have studied dynamical behavior in ecological miaugl
particularly in prey-predator system and contridute
growth of continuous models for large size popalei [5,
7, 9, 10]. Dhar [3] studied a prey-predator dynanighere
the predator species partially depend upon the ppegies
in a two patch habitat and obtained the conditidmis
asymptotic stability therein. Dubey [4] proposedpeey-

living together. Letc(t) andy(t) are the population of prey
and predator respectively at time ‘t’. Let’‘is per capita
prey growth rate,c’ is per capita predator mortality rate and
‘y’ is the harvesting activity constant. The terfsbxy)

and (dxy) describe the prey-predator encounters which are

favorable to predator and fatal to prey respectivdlhe
prey-predator model [12] with harvesting activity given

predator model and observed that the reserve zaseah bY

stabilizing effect on prey-predator interactionsschike et
al. [8] presented functional response model thatriporates
handling and digesting time of prey and found fivatdation

E=0Lx—bxy—]/x

dt
@
Z—f =—cy +dxy —vy,

rate is maximum of either time spent for handling owhere all the parametera,b,c,d and y are positive

digesting prey. Wanbia et al. [11] studied the loaad
global dynamical properties of the positive equilim of
Lotka-Volterra prey-predator system with distribdigelays
and shown that if the positive equilibrium does eatst
then the equilibrium is globally asymptotic stabled if the
positive equilibrium exists then it is locally asptutically

parameters.

By applying the forward Euler method to system (@

obtain the discrete-time prey-predator model dsvi:

{ Xnt1 = Xn T+ an(a - byn - )/) (2)
Yn+1 = Yn + 8yn(—c + dx, — ),

whereé is the step size.

stable. Moghadas et al. [13] extended Gauss-ty@y-pr The fixed points of the system of equations (2) Br@, 0)

predator model to include a general monotonic anthbed
seasonally varying functional response and invattit the
global stability of boundary equilibria and the signce of
periodic solutions. Narayan et al. [14] studied adet in
which the predator is provided with an alternatfeed in
addition to the prey, and both the prey and thedatigr
harvested proportional to their population sizesanyl
researchers found that the discrete-time modelsnaree
appropriate and provide efficient results as comgydo the
continuous models for small size populations [16,210].
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and E,(x3,v;) wherex; = CTTV, 5
a>y
Lemma 2.1: [see 15] Let F(1) = A2 — BA + C. Suppose

that F(1) > 0, 4, and 4, arerootsof F(1) = 0. Then

==L andy; exists if

() [2;] <1 and |A,] < 1 if and only if F(—1) >
0OandC < 1;
(i) [2;]<1 and [A;]>1 (or |44]>1 and

|2;] < 1)ifandonlyif F(—1) < 0;

(iii) [2;] > 1 and |A,] > 1 if and only if F(—1) >
0OandC > 1;

(iv) A =-1and|1,| #1ifand only if F(—-1) =
0OandB # 0, 2;

(V) A, and A, are complex and |A,]| = |4, =1 if

andonlyif B2 —4C < 0andC = 1.
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critical pointE (x, y). ThenE (x, y) is called a sink or locally
asymptotically stable if1,| <1 and|4,| < 1. E(x,y) is
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[A,] > 1). E(x,y) is called a source or locally unstable if
[A4:] > 1 and |4,| > 1. E(x,y) is called non-hyperbolic if
either|A;| = 1 or|A,| = 1.

Remark 2.2 (a): The critical point E;(0,0) isasink if a< y
,saddleif 0 <y < a and non-hyperbolicify = a.

The jacobian matrix of (2) d, (0, 0) is given by

_[1+8(a-vy) 0
Ji= 0 1+5(—c—y)]'
The eigen values of jacobian matrix are 1, =1+
6(a—y)andi, =1+ 6(—c —y). Here
() 411 <1 and |2;| <1 if a<y and-c <y
i.e. if a <y. ThereforeE;(0,0) is a sink if
a<y. o
(i) [/ >1 and |A,| <1 if a>y and-c <y.

ThereforeE;(0,0) is a saddle id < y < a.
(iii) M]l=1o0r|2]|=1if a=y and-c=y.
ThereforeE; (0, 0) is non-hyperbolic ifr = a.

Remark 2.2 (b): The critical point E,(x3,y;) is a source if o
y < a.
The jacobian matrix of (2) &, (x3,y;) is given by

1 —b8x; !
J, =|dé(a+c—dx;)

b
The corresponding characteristic equation can fittewras 1 2 3 s s
A2 — (tr],)A + det], =0, Fig. 2.1b

where a=14,b=08,c=0.6,d=0.5,y=0.2.

tr; =2 ()
and Population

det], = 1+ §%x;d(a + ¢ — dx3). (4)

Let F(1) = A2 — (tr],)A + det],. (5)
From (5), we have

F(1) =1—(tr],) + det],. (6)
Using (3) and (4) in (6), we get

F(1) = 6%x;d(a+ c — dx;).

As F(1) is positive, we have

L e e P A A e s
e

x; < % (7 ; ;
From (5), we have 0w 10 0
F(=1) = 1+ (tr];) + det],. (8) Fig. 2.2a
Using (3) and (4) in (8), we get y
F(—1) =4+ 6%*x;d(a+c—dx;). Now we have the 35¢
following cases; 30f
. . x _ atcta _ .
() F(=1)>0 if x; <—— where a = a1 .
positive always andet/, < 1 if 'ZTJ'C < x5, which 20F
contradicts (7). 1sf
(i) F(=1) <0 if “=2% < x3, which contradicts (7). o
(i) F(-1) >0 if x; <% and detJ, > 1 when ol
x; < aT”. ThereforeF(—1) > 0 anddet/, > 1 if ‘ ‘ ‘ ‘ .
1 2 3 4 5
x5 < aT“ i.e. if y <a. SOE,(x},y") is a source if Fig. 2.2b
y <a a=14b=08c=06d=0.5y=04
atcta

which contradicts (7).

(iv) F(-1) =0if x; = , . _— L .
d o . ) In fig. 2.1a and 2.2a, solid line shows the vapiatdfx with
(V) det], =1 whenx; = —=, which contradicts (7).  time ¢ and dotted line shows the variationyofvith time ¢.
Hence the critical poirit,(x3,y3) is a source if < a. In fig. 2.1b and 2.2b, solid line shows the vadatofy with
2.3 Numerical simulation x. It has been observed that the population sizeredator
In this section simulation of model (1) has beemied out decreased when harvesting activity varies frpm 0.2 to
in the interval [0, 50] taking initial values gfandy in ratio y = 0.4.
of 5:1.
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IIl. ALLEE EFFECT ON PREY POPULATION
The proposed prey-predator model with harvestirtgitc
in the presence of Allee effect on prey populat®on
Z=x|a-n=-by

u+x
dy

= ¢y tdxy —vyy.
where u is Allee constant with the assumption that 0.
By applying the forward Euler method to system (@

obtain the discrete-time model as follows:
Xny1 = Xp + 5xn [(a - ]/) wtxn - an

Yn+1 =Yn T Syn(_c +dx, — }’),
where ux" is the Allee effect function.

9)

Xn

](10)

Xn
Critical points of the system of equations (9) &t€0,0)
andE, (x3, vs) wherex; = Cny is always positive, and

c oo x5

YT b utal
Remark 3.1 (a): The critical point E;(0,0) is non-
hyperboalic.
The jacobian matrix of (10) &k (0, 0) is given by

]32[(1) 0-

The eigen values of jacobian matrjx are 4, =1 and
A, = 1. ThereforeE; (0, 0) is non-hyperbolic.
Remark 3.1 (b): The critical point E,(x},ys) is a source if
y <a.
The jacobian matrix of (10) &, (x;, y;) is given by

1+ (a—y)SB —bdx;

= S(a— * 1]
]4- [d (Z V)ﬁ(u+x4) 1

always positive.
The corresponding characteristic equation can figewras
A2 — (tr])A + det], =0,

where g = (ui’;)z is
4

wheretr/, =2 + (a —y)3dp

and

det], =14 (a—y)BS[1+ déx;(u+ x5)].
(12)

(11)

Let F(1) = 22 — (tr],)A + det],. (13)
From (13), we have
F(1) =1 — (tr],) + det/,.
Using (11) and (12) in (14), we get
F(1) = (a—y)B&*xi(u + x5).
As F(1) is positive, we have < a.
From (13), we have
F(—1) =1+ (tr],) + det],.
Using (11) and (12) in (16), we get
F(-1) =4+ (a—y)BS6[2 + Sxz(u+ x1)].
Now we have the following cases;
i) F(-1)>0 if a>y-1l, where I[=

4 .
m anddet]4 < 1 whena < Y which

contradicts (15).
(i) F(—1) <0if a <y — [ which contradicts (15).
(i) F(-1)>0ifa>y—landdet],>1ifa>y.
ThereforeF(—1) > 0 anddet/, > 1 if y <a.
ThereforeE, (x}, y;)isasourceif y < a.

(14)

(15)

(16)

(iv) F(—1) = 0if a = y — [ which contradicts (15).

(v) det], = 1if a =y which contradicts (15).
Hence the critical poirit,(x},y3) is a source if < a.
3.2 Numerical simulations
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In this section simulation of model (9) has beemnied out
in the interval [0, 50] taking initial values efandy in ratio
of 5:1.

Population
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Fig. 3.1b
a=14,b=08c=06d=0.5y=02 andu = 0.010

Population
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Fig. 3.2b
a=14b=08c=06d=05y=02andu = 0.018
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a=14,b=08,c=0.6,d=0.5,y =04 andu = 0.010
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8

Fig. 3.4b
a=14,b=08c=06d=057y=04andu = 0.018

In fig. 3.1a, 3.2a, 3.3a and 3.4a solid line shave
variation of x with time t and dotted line shows the
variation ofy with timet. In fig. 3.1b, 3.2b, 3.3b and 3.4b
solid line shows the variation of with x. It has been
observed that the populations of predator as welprey
increases progressively with the passage of tiByecritical
analysis of all figures, it has been observed thattime
interval between two consecutive maxima increasedthdth
prey and predator populations and less number oimaa
observed in same time intervals as we increaseeAlle
constant ‘u’ from 0.010 to 0.018.

Further, it has been observed that there is contisiu
increase in population size of prey and predator by
increasing the Allee constant ‘u’.

IV.CONCLUSIONS

In the prey-predator model with harvesting activand
without Allee effect,E,(x3,y3) is a source iy < a. In the
prey-predator model with harvesting activity in fhresence
of Allee effect on prey populatiork, (x3,yz) is a source if
vy<a.
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