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Abstract- In this paper, the stability analysis of discrete-time 
Prey-Predator model with harvesting activity in presence and 
absence of Allee effect on prey population has been carried out. 
Forward Euler method is applied to the continuous model to 
obtain the discrete-time model. We discussed the stability 
criterion of the discrete-time model at the fixed points. Numerical 
simulations have been carried out to show the dynamical 
behavior of the model.  
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I. INTRODUCTION 

The Prey-Predator model is a topic of great interest for 
many mathematicians and ecologists. Many researchers 
have studied dynamical behavior in ecological modelling 
particularly in prey-predator system and contributed to 
growth of continuous models for large size populations [5, 
7, 9, 10]. Dhar [3] studied a prey-predator dynamics, where 
the predator species partially depend upon the prey species 
in a two patch habitat and obtained the conditions for 
asymptotic stability therein. Dubey [4] proposed a prey-
predator model and observed that the reserve zone has a 
stabilizing effect on prey-predator interactions. Jeschike et 
al. [8] presented functional response model that incorporates 
handling and digesting time of prey and found that predation 
rate is maximum of either time spent for handling or 
digesting prey. Wanbia et al. [11] studied the local and 
global dynamical properties of the positive equilibrium of 
Lotka-Volterra prey-predator system with distributed delays 
and shown that if the positive equilibrium does not exist 
then the equilibrium is globally asymptotic stable and if the 
positive equilibrium exists then it is locally asymptotically 
stable. Moghadas et al. [13] extended Gauss-type prey-
predator model to include a general monotonic and bounded 
seasonally varying functional response and investigated the 
global stability of boundary equilibria and the existence of 
periodic solutions. Narayan et al. [14] studied a model in 
which the predator is provided with an alternative feed in 
addition to the prey, and both the prey and the predator 
harvested proportional to their population sizes. Many 
researchers found that the discrete-time models are more 
appropriate and provide efficient results as compared to the 
continuous models for small size populations [1, 2, 6, 10].   
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In this paper, the stability analysis of discrete-time Prey-
Predator model with harvesting activity in presence and 
absence of Allee effect on prey population has been carried 
out. In the first stage, Forward Euler method is applied to 
continuous model with harvesting activity and without Allee 
effect to obtain the discrete-time model. We discussed the 
stability criterion of the discrete-time model at fixed points. 
At the second stage, similar analysis has been carried out by 
incorporating Allee effect on prey population. Numerical 
simulations have been carried out to show the dynamical 
behavior of the model.  

II. MATHEMATICAL MODEL 

Consider a habitat where prey and predator species are 
living together. Let ���� and ���� are the population of prey 
and predator respectively at time ‘t’. Let ‘�’ is per capita 
prey growth rate, ‘�’ is per capita predator mortality rate and 
‘�’ is the harvesting activity constant. The terms �−
���  
and ����� describe the prey-predator encounters which are 
favorable to predator and fatal to prey respectively. The 
prey-predator model [12] with harvesting activity is given 
by  

� 
�
� = �� − 
�� − ��			

�
� = −�� + ��� − ��,�  (1) 

where all the parameters �, 
, �, � and � are positive 
parameters. 
By applying the forward Euler method to system (1), we 
obtain the discrete-time prey-predator model as follows: 

� ���� = �� + ����� − 
�� − ������ = �� + ����−� + ��� − ��,� (2) 

where � is the step size. 
The fixed points of the system of equations (2) are ���0, 0� 
and �����∗, ��∗� where ��∗ = �� 
 , ��∗ = !" #  and ��∗ exists if � > �. 
Lemma 2.1: [see 15] Let %�&� = &� − '& + (. Suppose 
that %�1� > 0, &� and &� are roots of %�&� = 0. Then 

(i) |&�| < 1 and |&�| < 1 if and only if %�−1� >0 and ( < 1; 
(ii) |&�| < 1 and |&�| > 1 (or |&�| > 1 and |&�| < 1) if and only if %�−1� < 0; 
(iii) |&�| > 1 and |&�| > 1 if and only if %�−1� >0 and ( > 1; 
(iv) &� = −1 and |&�| ≠ 1 if and only if %�−1� =0 and ' ≠ 0, 2; 
(v) &� and &� are complex and |&�| = |&�| = 1 if 

and only if '� − 4( < 0 and ( = 1. 
Let &� and &� are eigen values of jacobian matrix at the 
critical point ���, ��. Then ���, �� is called a sink or locally 
asymptotically stable if |&�| < 1 and |&�| < 1. ���, �� is 
called a saddle if |&�| > 1 and |&�| < 1 (or |&�| < 1 and 
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|&�| > 1). ���, �� is called a source or locally unstable if |&�| > 1 and |&�| > 1. ���, �� is called non-hyperbolic if 
either |&�| = 1 or |&�| = 1. 
Remark 2.2 (a): The critical point ���0, 0� is a sink if a< � 
, saddle if 	0 < � < � and non-hyperbolic if � = �.  
The jacobian matrix of (2) at ���0, 0� is given by /� = 01 + ��� − �� 00 1 + ��−� − ��1. 
The eigen values of jacobian matrix /� are &� = 1 +��� − �� and &� = 1 + ��−� − ��. Here 

(i) |&�| < 1 and |&�| < 1 if � < � and – � < �  
i.e. if � < �. Therefore ���0, 0� is a sink if � < �. 

(ii)  |&�| > 1 and |&�| < 1 if � > � and – � < �. 
Therefore ���0, 0� is a saddle if 0 < � < �. 

(iii)  |&�| = 1 or |&�| = 1 if � = � and – � = �. 
Therefore ���0, 0� is non-hyperbolic if � = �. 

Remark 2.2 (b): The critical point �����∗, ��∗� is a source if � < �. 
The jacobian matrix of (2) at �����∗, ��∗� is given by 

/� = 4 1 −
���∗���� + � − ���∗�
 1 5. 
The corresponding characteristic equation can be written as &� − ��6/��& + �7�/� = 0,    
                  where �6/� = 2    (3) 
and  �7�/� = 1 + ����∗��� + � − ���∗�. (4) 
Let %�&� = &� − ��6/��& + �7�/�. (5) 
From (5), we have 
 %�1� = 1 − ��6/�� + �7�/�.                   (6) 
Using (3) and (4) in (6), we get %�1� = ����∗��� + � − ���∗�. 
As %�1� is positive, we have 

 ��∗ < !��
 .    (7) 

From (5), we have   %�−1� = 1 + ��6/�� + �7�/�.   (8) 
Using (3) and (4) in (8), we get %�−1� = 4 + ����∗��� + � − ���∗�. Now we have the 
following cases; 

(i) %�−1� > 0 if ��∗ < !���8
  where 9 = :;<�<∗
 is 

positive always and �7�/� < 1 if  
!��
 < ��∗, which 

contradicts (7). 

(ii)  %�−1� < 0 if 
!���8
 < ��∗, which contradicts (7). 

(iii)  %�−1� > 0 if ��∗ < !���8
   and �7�/� > 1 when ��∗ < !��
 . Therefore %�−1� > 0 and �7�/� > 1  if  ��∗ < !��
   i.e. if  � < �. So �����∗, �∗� is a source if � < �.  

(iv) %�−1� = 0 if ��∗ = !���8
 , which contradicts (7). 

(v) �7�/� = 1 when ��∗ = !��
 , which contradicts (7). 

Hence the critical point E��x�∗ , y�∗� is a source if γ < �. 
2.3 Numerical simulation 
In this section simulation of model (1) has been carried out 
in the interval [0, 50] taking initial values of � and � in ratio 
of 5:1. 

 
Fig. 2.1a                             

 
                   Fig. 2.1b � = 1.4, 
 = 0.8, � = 0.6, � = 0.5, γ = 0.2. 
 

 
                          Fig. 2.2a 

 
 Fig. 2.2b � = 1.4, 
 = 0.8, � = 0.6, � = 0.5, γ = 0.4. 

 
In fig. 2.1a and 2.2a, solid line shows the variation of � with 
time � and dotted line shows the variation of � with time �. 
In fig. 2.1b and 2.2b, solid line shows the variation of � with �. It has been observed that the population size of predator 
decreased when harvesting activity varies from γ = 0.2 to 
γ = 0.4. 
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III. ALLEE EFFECT ON PREY POPULATION 

The proposed prey-predator model with harvesting activity 
in the presence of Allee effect on prey population is: 

�
�
� = � C�� − �� �D�� − 
�E

�
� = −�� + ��� − ��.							�     (9) 

where u is Allee constant with the assumption that F > 0. 
By applying the forward Euler method to system (9), we 
obtain the discrete-time model as follows: 

G���� = �� + ��� C�� − �� �HD��H − 
��E���� = �� + ����−� + ��� − ��,										�(10) 

where  
�HD��H is the Allee effect function.  

Critical points of the system of equations (9) are �I�0, 0� 
and �:��:∗, �:∗� where �:∗ = �� 
  is always positive, and  

�:∗ = �!" �# �J∗D��J∗. 
Remark 3.1 (a): The critical point �I�0, 0� is non-
hyperbolic. 
The jacobian matrix of (10) at �I�0, 0� is given by /I = C1 00 1E. 
The eigen values of jacobian matrix /I are &� = 1 and &� = 1. Therefore �I�0, 0� is non-hyperbolic. 
Remark 3.1 (b): The critical point �:��:∗, �:∗� is a source if � < �. 
The jacobian matrix of (10) at �:��:∗, �:∗� is given by 

/: = K 1 + �� − ���L −
��:∗
;�!" �# L�F + �:∗� 1 M,	 where L = D�J∗ND��J∗O< is 

always positive. 
The corresponding characteristic equation can be written as &� − ��6/:�& + �7�/: = 0,    
                   
where �6/: = 2 + �� − ���L  (11) 
and �7�/: = 1 + �� − ��L�P1 + ���:∗�F + �:∗�Q.   
                               (12) 
Let %�&� = &� − ��6/:�& + �7�/:. (13) 
From (13), we have 
 %�1� = 1 − ��6/:� + �7�/:.                    (14) 
Using (11) and (12) in (14), we get 
  %�1� = �� − ��L���:∗�F + �:∗�. 
As %�1� is positive, we have � < �. (15) 
From (13), we have  %�−1� = 1 + ��6/:� + �7�/:.  (16) 
Using (11) and (12) in (16), we get %�−1� = 4 + �� − ��L�P2 + ��:∗�F + �:∗�Q.  
Now we have the following cases; 

(i) %�−1� > 0 if � > � − R, where R =:S;T��;�J∗ND��J∗OU and �7�/: < 1 when � < � which 

contradicts (15). 
(ii)  %�−1� < 0 if � < � − R which contradicts (15). 
(iii)  %�−1� > 0 if � > � − R and �7�/: > 1 if � > �. 

Therefore	%�−1� > 0 and �7�/: > 1 if  � < �. 
Therefore �:��:∗, �:∗�is a source if � < �. 

(iv) %�−1� = 0 if � = � − R  which contradicts (15). 
(v) �7�/: = 1 if � = � which contradicts (15). 

Hence the critical point E:�x:∗ , y:∗� is a source if γ < �. 
3.2 Numerical simulations 

In this section simulation of model (9) has been carried out 
in the interval [0, 50] taking initial values of � and � in ratio 
of 5:1. 

 
Fig. 3.1a  

 
                                        

 Fig. 3.1b � = 1.4, 
 = 0.8, � = 0.6, � = 0.5, γ = 0.2 and F = 0.010 
 

     
Fig. 3.2a 

             
          
Fig. 3.2b � = 1.4, 
 = 0.8, � = 0.6, � = 0.5, γ = 0.2 and F = 0.018 
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    Fig. 3.3a    

 
 
 Fig. 3.3b � = 1.4, 
 = 0.8, � = 0.6, � = 0.5, γ = 0.4 and F = 0.010 

 

 
Fig. 3.4a  

   

 
 

              Fig. 3.4b � = 1.4, 
 = 0.8, � = 0.6, � = 0.5, γ = 0.4 and F = 0.018 
 

In fig. 3.1a, 3.2a, 3.3a and 3.4a solid line shows the 
variation of � with time � and dotted line shows the 
variation of � with time �. In fig. 3.1b, 3.2b, 3.3b and 3.4b 
solid line shows the variation of � with �. It has been 
observed that the populations of predator as well as prey 
increases progressively with the passage of time.  By critical 
analysis of all figures, it has been observed that the time 
interval between two consecutive maxima increased for both 
prey and predator populations and less number of maxima 
observed in same time intervals as we increase Allee 
constant ‘u’ from 0.010 to 0.018.  
Further, it has been observed that there is continuous 
increase in population size of prey and predator by 
increasing the Allee constant ‘u’. 

IV. CONCLUSIONS 

In the prey-predator model with harvesting activity and 
without Allee effect, E��x�∗ , y�∗� is a source if γ < �. In the 
prey-predator model with harvesting activity in the presence 
of Allee effect on prey population, E:�x:∗ , y:∗� is a source if 
γ < �. 
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