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Abstract— The aim of this paper is to apply Goal Programming 

in facility location. The feasibility project of a project idea on 
building an economic object is a defining moment in the decision 
making of the party that is investing on a certain project. 
Generally, the feasibility is done based on the global data 
extracted by the practical experience of building and functioning 
of similar existing object. However, it is understandable that the 
accuracy of the feasibility results is increased when different 
points of view are used in combination with exact methods of 
calculation. In this aspect, it is important to predict the income 
from the use of the object’s capacities. This leads to an 
intermediary problem which consists in predicting the most result 
oriented use of the object’s capacities. If the use of these capacities 
can be mathematically modeled through optimization models, 
then the basis of the data for evaluating the feasibility of the object 
becomes clearer. In this study was considered the possibility of 
using a mathematical model for the basin used by a yacht harbor. 
As a result, it is shown that the optimal use of a basin by a yacht 
harbor can be modeled as an objective function problem, which 
according to previously known methods can turn into a 
mathematical programming problem. 

Keywords— Goal programming, facility location, goal 
programming,  optimization. 

I.  INTRODUCTION 

Since tourism in Albania is a very important sector in the 
country’s economy, the central administration and the local 
ones are re-evaluating our specific resources and creating the 
legal opportunities for using them through the drafting and 
approval of master plans in a local or national level. This 
sector of the economy is of special interest to different 
businessman and investors. In these circumstances the 
touristic capacities are vastly growing. Besides the existing 
structures, there are new state and private projects working 
on increasing the touristic capacities for the traditional 
activities or new ones. In these relatively rapid developments, 
it is noticeable that the importance of the projections and 
constructions of yacht harbors is increasing. 
Considering the size, structure and equipment that 
these harbors have, their cost could reach up to millions of 
Euros. In the time we are living in, when our experiences in 
building such touristic structures are not as developed, it is 
important that each aspect of the construction of these 
harbors is well studied, especially the technical, 
environmental and financial aspects. Another reason is the 
lack of the legal-administrative aspect of their functioning, 
which has allowed this touristic activity to remain not fully 
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explored, although there is some public interest in their 
development. These reasons make the feasibility study of this 
project a very delicate situation which needs to be carefully 
treated by economists and technical planners.  

II.  PROBLEM STATEMENT  

     After defining the physical dimensions and the necessary 
structures of such a project, its cost can be calculated based 
on the volume of works to be done and the prices of materials 
and equipment. This cost must be compared to the predicted 
income from the harbor. But, based on what factors must this 
income be calculated? This is the crucial topic that is treated 
in this study, where as an alternative is proposed the use of 
mathematical models as shown below.  
It is clear that the income coming from such a touristic harbor 
is connected not only to marketing aspects, but also to the 
way that boats are organized in its basin. Different ways of 
organizing the yachts in the harbor are characterized by their 
structure and size, and from different levels of income. 
Practically, the organizational system of yachts and 
motorboats is based on experience and individual 
assumptions. Obviously, if one must find an optimal use for 
the basin of the harbor, then the use of mathematical models 
would lead to more exact assumptions of the income. In this 
line of thinking we assume that harbor projects, besides their 
structural aspect, should be accompanied with the optimal 
planning of the basin. With such a basis, the feasibility study 
would be much more reasoned.  
      The international experience in constructing and 
rationally using touristic harbors has led to the advanced idea 
of using the basin not only along the coast line but in its inner 
part as well. This idea is technically realized with floating 
dock along which are put the supply lines for electricity, 
technological water and fuel for the needs of the yachts. 
Normally, the form of the basin depends on the terrain where 
the harbor is constructed. But, having in mind how basins are 
formed by advancing in the sea and digging towards the 
ground, we take a triangular shape of the basin as a basis (fig. 
1). However, the method we will explore here can be adapted 
to non rectangular shapes of the basin.  
      In this context we will name the touristic motorboats and 
sailing yachts that will be located in the touristic harbors with 
the common name of “boats”. For their docking we will use 
the term “connection”. The part of the water basin where a 
boat is connected to the other structures and furnishing will 
be named “boat-location”. Renting a boat location in the 
harbor can be short term (a few days) or long term (some 
decades). Since in the biggest part of the year the boat 
remains connected to a chosen harbor from its owner, the 
owner probably would prefer to have its own boat location 
for a longer time period. In the model that we will construct 
we will consider this way of using the harbor, which will 
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generate profit for each boat location.  Obviously boats have 
different lengths, starting from 7m up to 30m. There are also 
very luxurious yachts longer than 30m, which reside in 
harbors that fulfill the yacht’s and owners specific 
requirements. Based on the managerial practices of harbors, 
the long term rent for a boat location, which normally 
depends on its length, is classified as below:  

 

 
The width of the boats is correlated to their length. For each 

of the groups iK , 1,...,6i =  the widths are known and 

reach known limits that we will appoint as ig , 1,...,6i = .  

The floating dock, in the configuration presented in figure 1, 
are parallel to each other and divided by an entrance canal in 
two groups. The length of the canal must be approximately 25 
m, which is enough for the boats to move freely. If the width 
of the water basin is small, then there can only be one group 
of floating dock and the entrance canal in this case will be 
from the side. The connection of the boats can be done 
through the two sides of the floating dock. Each yetty side is 
predicted large enough for certain types of boats (eventually, 
they can be connected to smaller boats).  

The length ijH   (or kH  if we only take one indicator into 

account) between the two floating dock  is calculated as the 
sum of the boat lengths of both classes Ki, Kj plus 1.5 times 
the length of the biggest boat. This water streak is large 
enough to allow the boat to approach its location and perform 
what is needed. Afterwards, to the above mentioned sum is 
added another 2m, resulting in this formula:  

Hk=Hij=hi+hj+1.5max{hi,hj} +2  
We will name this length the length of the water segment 
which serves to two classes Ki,Kj i,j=1,…,6. It is noticeable 
that the number of water segments is equal to the number of 
floating dock.  
The length of the floating dock (fig. 1) is:  

metersbd )25(
2
1 −=     (1) 

We assign ni the number of boats belonging to the classes 

iK , 1,...,6i =  which can be connected through a floating 

dock. This number is: 

                         ni = 

2162
6 =+
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Water segments can be created for every combination of the 
boat classes Ki,Kj    i=1,…,6 and j=1,…,6. In our case their 
total number is  

n = 216C2
6 =+  

The types of water segments that correspond to the different 
combinations (Ki,Kj) of the boat classes will be assigned as 
Tk, k=1,…,21  
counted according to this row of combinations: 
(K1,K1),(K1,K2),…,(K1,K6),(K2,K2),…,(K2,K6),…,(K6,K6). 
The respective lengths of these segments will be noted as 
h(Tk), k=1,…,21. The amounts of the boats belonging to each 
class which can be connected to a water segment Hk, as 
calculated in equation (2), are: 
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These amounts are shown in table 1. In continuance of each 
row from that table are written the numbers c1,…,c6 which 

represent the prices for a boat location of each class iK , 

1,...,6i =  that are considered as components of the price 

vectors 6Rc∈ . 
A layout of water segments in the harbor is defined by the 

numbers xk of the water segments of each type kT , 

21,...,1=k which are predicted to be established in the 

harbor. So, it is understandable that a layout is characterized 
by a vector xT=(x1,…,x21), with components xk, k=1,...,21. 
As mentioned above, water basins of yacht harbors are layed 
partly towards the land and partly towards the sea. In special 
occasions the water basin can be layed only on one of these 
directions. However, one of the projection matters of the 
harbor is defining how much the basin will lay on each of 
these directions. So, we assign:  
      x22∈R   – the laying amount in the water basin  
      x23∈R   – the laying amount in the land. 
 

 
 

III.  BUILDING THE MATHEMATICAL MODEL 

It would be of high interest that the harbor plan contains as 
many boat locations for each lenght type, but their amount 
depends on the size of the water basin and the spectrum of the 
classes.  The sum  ∑ ����

��
� , shows the layout of the total 

length of all the water segments of the plan. In this case we 
assign ��	�� the matrix which is defined by the elements of 
table 1.       
A. The capacity constraint. 
This condition expresses the physical limitation that the sum 
of all lengths Hk of the water segments of a plan should not be 
bigger than the double of the longitudinal extension 
a=x22+x23 of the water basin of the harbor (fig. 1). This 
condition is measured through this equation:  

Class 

iK  

Its lengths 

ig  

Rent 
euro/boat 

ic  

K1 up to  h1=8m c1 
K2 from  h1=8m    up to   h2=12m c2 
K3 from h2=12m    up to  h3=15m c3 
K4 from h3=15m    up to  h4=20m         c4 
K5 from h4=20m    up to  h5=25m c5 
K6 from h5=25m     up to  h6=30m c6 
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B.  The constraint of the boat classes. 

The managerial experiences have shown that a yacht harbor 
which is built to serve one or two boat classes of small 
lengths, does not achieve the expected success from their 
activity. It is understandable that the presence of larger boats 
in a harbor proves a more qualified service, technical and 
administrative, and better accommodation conditions. So, 
indirectly, the presence of larger class boats is the best 
publicity for the quality of services that the harbor offers and 
at the same time leads to an increase in the number of boat 
location requests for all different classes. So, it is more 
reasonable to have a wider spectrum of boat classes.  
It is known that the amount of boats in circulation decreases 
when the class’s index increases. That is the reason that the 
managers of yacht harbors start predicting minimal 
limitations of the number of boat locations for the higher 
classes since the projection time. The minimal limitations can 
also be classified in special classes.  

For a length class of iK , 1,...,6i =  let’s assign gi(x) to the 

number of boats which belong to the class of a certain plan x. 
Considering what is mentioned above, the number is:  

gi(x)=(Ax) i                                 (4) 
If the minimal boundary set for this class is Ni, then the 
boundary is expressed by the inequation:  

gi(x)≥Ni                            (5) 
To make the idea proposal a bit more concrete, we suppose 
that the minimal boundaries belong to the group-class 
(K5,K6) and for the special classes K4 and K3. We assign these 
boundaries as N5,6, N4 and N3 respectively. In the cases when 
the limitations are set for groups of classes the choice of a 
model can lead to the non-inclusion of one of the classes. But, 
it is important that the classes spectrum is complete. So, the 
final plan must guarantee the presence of the larger classes 
which we suppose is Ks. such a request is realized by adding 
the limitation that the sum of the xk values for k where 
ns(k)≠0, must be ≥1. For the group class (K5,K6) this step 
belongs concretely to class K6. 

 
C. Goals 

We assign f(x) to the sum of the total income from long term 
leasing of all the boat locations that the harbor plan contains. 
Keeping in mind the meaning of the matrix product Ax ,  
and the product of the vector c components, it is clear that the 
analytical expression of f(x) is:  

( ) )(Axcxf T=                                (6) 

We assign:   
 a1 -the distance from the coast, of the line where sea depth is 
4.5m.  
 a2 -the maximum boundary of the laying inside the ground of 
the water basin without natural, administrative or property 
obstacles.  
With these symbols we can formulate the further objectives:  
Ob.1. function f(x)  should receive the highest value 

possible. 
Ob.2. advancing at sea x22  should be as close to a1 as 
possible. 
Ob.3. inserting the water basin inside the ground x23 should 
not be bigger than a2. 

 
D. The mathematical model. 

 
We assign X to the vector with components (x1,…,x21,x22,x23) 
where xkϵN, k=1,...,21 and x22, x23ϵR. So, the vector X of the 
decision making variables is reached by adding the vector to 
the plan x, the two new components x22 and x23 in real values 
which represent the mass of advancement of the water basin 
in the sea and its infiltration into the water. We assign 
c1(X)=f(x), c2(X), c3(X) respectively the functions that 
represent objectives 1,2,3 depending on the decision making 
variables.  It is clear that c2(X)=x22, c3(X)=x23, while c1(X) is 
expressed as shown below by using the data from table 1. The 
objectives 2 and 3 are expressed respectively by the equation: 
c2(X)=x22=a1 and inequation c3(X)  = x23 ≤ a2. 
And now, the problem of rationally using the water basin of a 
yacht harbor takes this mathematical form:  
Ob.1. Maximizing the function of the income (6) which when 
developed is:  
      
c1(X)=2n1c1x1+(n1c1+n2c2)x2+(n1c1+n3c3)x3+(n1c1+n4c4)x4+ 
+(n1c1+n5c5)x5+(n1c1+n6c6)x6+2n2c2x7+(n2c2+n3c3)x8+ 
+(n2c2+n4c4)x9+(n2c2+n5c5)x10+(n2c2+n6c6)x11+2n3c3x12+ 
+(n3c3+n4c4)x13+(n3c3+n5c5)x14+(n3c3+n6c6)x15+2n4c4x16+ 
+(n4c4+n5c5)x17+(n4c4+n6c6)x18+2n5c5x19+(n5c5+n6c6)x20+ 
+2n6c6x21 
Ob.2. Achieving this equation:   
           x22=a1                                       
Ob.3. Achieving this inequation:   
          x23 ≤ a2. 
With the condition that all of the above conditions are made 
true through these inequations: 
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(7) 
This mathematical model is a goal programming model. The 
solutions of the problems for goal programming are found by 
returning them into mathematical problems (for example 
[3],[4],[5] etc). In our case, just as the functions c1(X), c2(X), 
c3(X) express the objectives of the problem, the inequations 
of the boundary system (7), are all linear. This means that the 
mathematical program also will be a linear programming.  
In order for the goal programming to turn into a linear 
programming it is necessary that the objectives, which in the 
problem setting do not have any numerical target, are defined 
in the most argumented way possible. In the case of our 
problem, related to the first objectives which concerns the 
expected income from all the boat locations, there is no 
expressed numerical target. In this case those who study the 
project and calculate the cost of actualizing the harbor and the 
expected income ratio, also define a satisfactory amount 
which makes the project feasible. We assign this satisfactory 
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amount with the symbol F. The depths a1 and a2 of the harbor 
insertion into the sea and land are the targets for the other two 
objective functions c2 (X) and c3(X).   
We assign:  

                        ++−+−+− ∈ Ry,y;y,y;y,y 332211            

the variables of the function values deviations c1(X), c2(X), 
c3(X) by the respective targets for each allowable solution X 
of the system (7).  
       With the insertion of the deviation variables it is possible 
to turn the problem into a linear programming through the 
two transformational operations:  
        (1) Construction of a summarizing objective function   
        (2) Insertion in the limitations system of a new equation 
for  each  objective. 
        For the problem in our case these operations are set out 
as below:  
(1) According to the weights method, as a summarizing 
objective function we use a linear function of the deviation 
variables, whose coefficients are defined based on the 
importance of each deviation. In this actual case we can 
consider as an important amount not passing the maximum 
limitation of how much we lay into the ground and water (a2) 

and we give a weight 5ω3 =+ to the variable of surpassing 

this limitation +
3y , while to the variable of non achieving this 

limitation −
3y  we can give the weight 0ω3 =−  since not 

achieving that limitation is not important.  
 For a sandy coastline, as it is the biggest portion of our 
coast line, we can initially take as a value a1 the distance from 
the depth of 4.5m. Probably, this distance gives the harbor 
adequate dimensions. Not achieving a1does not cause an 
issue for the selected objectives. That is why we assign the 

weight 0ω2 =−
to the variable 

−
2y  which shows how much 

the a1 distance is not reached. Meanwhile, exceeding that 
distance a1 is important because the expenses of building the 
wave holding  become much higher compared to the scenario 
where the distance is not exceeded. For this reason the 

variable 
+
2y  receives a positive weight (see below).  

 Finally, for the first objective of maximizing income, 
exceeding target F is not problematic. For this reason the 

variable
+
1y  is assigned a weight of 0ω1 =+

. It is also 

crucial that this target is achieved. Based on the actual 
circumstances we can compare the increase in expenses when 
target a1 is exceeded to the decrease in income that not 
achieving this target brings. Based on such a comparison are 

compared the weights assigned to variables 
−
1y  and 

2ω2 =+
 .  

 We assign X
~

to the vector of all variables (a total of 29) 
which we get by adding the six deviation variables 

+−+−+−
332211 y,,,,, yyyyy to the vector X. After 

evaluating the weights of the deviation variables, the 
summarized objective function which is closest to expressing 
the objective function target is:  

 Φ( X
~

) = ++−++++−− ++=++ 321332211 5y2y3yyωyωyω  

        The requests for achieving the accepted targets related 
to the objective functions c1(X), c2(X), c3(X, after inserting 
the deviation variables, are mathematically expressed 
through these equations: 

                    c1(X) 
+− −+ 11 yy           = F 

                        x22    +
+− − 22 yy           = a1 

                        x23    + +− − 33 yy
            

= a2 

 Finally, by adding the limitations (7) to the three last 
equations, the problem of optimal use of the water basin of a 
yacht harbor turns from an objective function program to a 
linear program with mixed variables:        

Min:Φ( X
~

)= =++ ++++−−
332211 yωyωyω   

      ++− ++= 321 5y2y3y   

With the constraints that the system of limitations below is 
verified:       
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The linear programing with mixed variables has relatively 
small proportions. Different programs and methods are used 
to solve such a problem (Hillier 2005). When the solution is 
not acceptable based on one or more selected targets, then 
without changing the model above we can analyse and 
re-define some targets or goals so that the problem has a 
solution. This practice can be repeated until we achieve the 
desired results.         
 For different reasons (nature, administrative limitations, 
property rights, etc), it can become difficult for the water 
basin to lay into the ground and pass a2. This means that the 
Objective 3 has been reached. Now we have a situation 
where the set of objectives are highly different based on their 
importance. In such cases, a hierarchy of priorities is defined. 
In the first priority are included the highly important 
objectives, whose reach can not be compromised because of 
the optimism for the other objectives. With such a criteria, in 
the set of the remaining objectives after removing those of 
first priority, are defined the second priority objectives and so 
on. This method of treating objectives based on priorities is 
called preemtive method in goal programming (Taha, 2007).  
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IV CONCLUSION 

In the phase of the fisibility study of different project ideas, 
using mathematical models brings valuable help to increasing 
the accuracy of the study conclusions. As shown in this 
article, the mathematical models of goal programming, are 
very suitable for such studies as they, in their own nature, in 
one model include different evaluation chriteria of the project 
fisibility. 
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