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Practical Implementation of Newton's Method 

Tested on Quadratic Functions 

Awatif M. A. El Siddieg 

Abstract: In this work we give a detailed look to the Practical 

implementation of Newton's method tested on quadratic 

functions. Section (1) speak about the theory of optimization 

problems, introduce definitions and theorems of linear 

programming problems , definitions and theorems of quadratic 

programming problems . Section (2) introduce some methods that 

has a relationship with our method .  In section(3) we look at a 

method for approximating solutions to equations, solving 

unconstrained optimization problems. The general theory of the 

problem is described. Section(4) gives  practical implementation 

of Newton's method tested on quadratic functions to test the 

theoretical  results shown in the work. Section (1) 

Keywords: - linear programming problems, Practical 

implementation of Newton's, quadratic functions. 

I. INTRODUCTION 

In this section we speak about the theory of optimization 

problems, introduce definitions and theorems of linear 

programming problems, definitions and theorems of 

quadratic programming problems. Linear programming 

problems: 

Definition(1): Optimization might be defined as the science 

of determining the( best) solution to certain mathematically 

defined problems , which are often models of physical 

reality.  It involves the study of optimality criteria for 

problems. 

Example (1): 

minimize: 

4a + 5b + 6c  

subject to:  

a + b ≥ 11  

a - b ≤ 5  

c - a - b = 0  

7a  ≥  35 - 12b  

a ≥ 0, b ≥ 0, c ≥0  

Solution: 

To solve this LP we use the equation c-a-b=0 to put c=a+b ≥ 

0 as a ≥ 0 and b≥ 0) and so the LP is reduced to  

Example (2) : 

minimize  

4a + 5b + 6(a + b) = 10a + 11b  

subject to  

a + b ≥ 11  

a - b ≤ 5  

7a + 12b ≥35  

a ≥ 0, b ≥ 0  

the minimum occurs at a - b = 5 and a + b = 11  

i.e. a = 8 and b = 3 with c = a + b = 11 and the value of the 

objective function 10a + 11b = 80 + 33 = 113.  
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Example (3): 

maximize : 

    5x1 + 6x2  

subject to : 

x1 + x2 ≤10  

x1 - x2 ≥ 3  

5x1 + 4x2 ≤ 35  

x1 ≥ 0  

x2 ≥ 0  

Solution: 

5x1 + 4x2 = 35 and  

x1 - x2 = 3  

Solving simultaneously, rather than by reading values off 

the graph, we have that  

5(3 + x2) + 4x2 = 35 

i.e. 15 + 9x2 = 35 

i.e. x2 = (20/9) = 2.222 and  

x1 = 3 + x2 = (47/9) = 5.222  

The maximum value is 5(47/9) + 6(20/9) = (355/9) = 39.444  

Definition(2): (Unconstrained optimization problems)  

The problem takes the form: 

minimize f  x .  

Subject to x   ∈ ℜn  

Where  𝑓 is a continuous real valued function .  

Definition (3) :  

A point 𝑥 ∈ ℜ𝑛 is said to be a relative minimum point or a 

local ℜ𝑛  if ∂ an ℰ > 0 such that f(𝑥)≥ f(𝑥∗) ∀𝑥 ∈ ℜ𝑛a strict 

relative minimum point of over ℜ𝑛  . 

Definition (4): ( constrained optimization problems)  

The general form of a constrained optimization problem the 

form[9] : 

min𝑥∈ℜ𝑛 𝑓 𝑥   

𝑐𝑖 𝑥 = 0 , 𝑖 = 1,2, …… , 𝑝            (1)  Subject to 

 

2))ci 𝑥 ≥ 0, i = 𝑝 + 1 , …… , 𝑛               

Where 𝑐𝑖  is the 𝑖𝑡𝑕  constraint function . the constraints 

𝑐𝑖 𝑥 = 0 are termed equality constraints  and the set of 

such . constraints is denoted by (E) and the  constraints 

𝑐𝑖 𝑥 ≥ 0 are termed inequality constraints denoted by Ι . 

Proposition (1): (First order necessary condition ) 

Let 𝑆 be a subset of ℜ𝑛  , and let f  ∈ ȼ 1  be a function on 𝑆 . 

If 𝑥∗ is a relative any minimum point of f over 𝑝 , then for 

any f ∈ ℜ𝑛  , that is a feasible direction at 𝑥∗ , we have  

∇𝑓 𝑥∗ 𝑝𝑇 ≥ 0[ . 

Corollary (1) :  

                Let 𝑆 be a subset of ℜ𝑛  , let f ∈ ȼ 1 , be a function 

on ℜ𝑛  . If 𝑥∗ is a relative minimum point of f and if 𝑥∗ is an 

interior point of ℜ𝑛  , then  

 ∇𝑓 𝑥∗ = 0. 

Descent directions at a point : 
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Consider the Taylor expansion of f 𝑥  about 𝑥 ′ up to the 

first order term 

𝑓  𝑥 ′ + 𝛼𝑝 = 𝑓 𝑥 ′ + 𝛼𝑝𝑇𝑔  𝑥 ′ + 𝛼𝜃𝑝  

α > 0  .       

Where,0< 𝜃 < 1 , 

Since   f 𝑥  is smooth enough (i.e, all the partial derivatives 

are continuous ), then 𝑝𝑇𝑔 𝑥  is < 0, ∀𝑥 ,then sufficiently 

close to 𝑥 ′ (by continuity ). Thus if 𝛼 is taken sufficiently 

small. 

 

 
More precisely   ∂𝛼 > 0 such that 

 

Thus         𝑓  𝑥 ′ + 𝛼𝑝 < 𝑓 𝑥 ′    we notice that if 𝑝𝑇𝑔′ < 0 

, then the value of 𝑓 decreases (locally if we move in the 

direction 𝑝) . 

Such a direction 𝑝 is called a descent direction at 𝑥 ′, and it 

chamcterized . by : 

 
An example of a descent direction at 𝑥 ′  is  𝑝 = −𝑔′since 

−𝑔′
𝑇
𝑔′ < 0 provided 𝑔′ ≠ 0 

(5): (Definite and semi definite matrices )   Definition 

Let 𝐶 be symmetric matrix we say that 𝐶 is positive definite 

if 𝑥𝑇  𝐶𝑥 > 0 ∀𝑥 ∈ ℜ𝑛  ,𝑥 ≠ 0 , C is called positive semi 

definite if 

𝑥𝑇∁𝑥 ≥ 0 for ∀ 𝑥 ∈ ℜ𝑛  . 

 

Section (2) 

Introduction:  

       In this section we introduce some methods that has a 

relationship with our method. 

Definition(6):    

Quadratic programming (QP) is a special type of 

mathematical optimization problem. It is the problem of 

optimizing (minimizing or maximizing) a quadratic function 

of several variables subject to linear constraints on these 

variables . 

1-Babylonian method: 

 
Graph charting the use of the Babylonian method for 

approximating the square root of 100 (10) using starting 

values x0 = 50, x0 = 1, and x0 = −5. Note that using a 

negative starting value yields the negative root [3]. 

Perhaps the first algorithm used for approximating is 

known as the "Babylonian method", named after the 

Babylonians,
[1]

 or "Heron's method", named after the first-

century Greek mathematician Hero of Alexandria who gave 

the first explicit description of the method.
[2]

 It can be 

derived from (but predates by many centuries) Newton's 

method. The basic idea is that if x is an overestimate to the 

square root of a non-negative real number S then will 

be an underestimate and so the average of these two 

numbers may reasonably be expected to provide a better 

approximation (though the formal proof of that assertion 

depends on the inequality of arithmetic and geometric 

means that shows this average is always an overestimate of 

the square root, as noted in the article on square roots, thus 

assuring convergence). This is a quadratically convergent 

algorithm, which means that the number of correct digits of 

the approximation roughly doubles with each iteration. It 

proceeds as follows: 

1. Begin with an arbitrary positive starting value x0 

(the closer to the actual square root of S, the 

better). 

2. Let xn+1 be the average of xn and S / xn (using the 

arithmetic mean to approximate the geometric 

mean). 

3. Repeat step 2 until the desired accuracy is 

achieved. 

It can also be represented as: 

 

 

 
This algorithm works equally well in the p-adic numbers, 

but cannot be used to identify real square roots with p-adic 

square roots; it is easy, for example, to construct a sequence 

of rational numbers by this method that converges to +3 in 

the reals, but to −3 in the 2-adics. 

Example (1): 

Calculate , where S = 125348, to 6 significant figures, 

use the rough estimation method above to get x0. The 

number of digits in S is D = 6 = 2·2 + 2. So, n = 2 and the 

rough estimate is: 
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Therefore,  

Convergence: 

Let the relative error in xn be defined by 

 
and thus 

 
Then it can be shown that 

 
and thus that 

 
and consequently that convergence is assured provided that 

x0 and S are both positive. 

Worst case for convergence: 

If using the rough estimate above with the Babylonian 

method, then the worst cases are: 

 
Thus in any case, 

 

 

 

 

 

 

 

 
Remember that rounding errors   will slow the convergence. 

It is recommended to keep at least one extra digit beyond the 

desired accuracy of the xn being calculated to minimize 

round off error. 

II. EXPONENTIAL IDENTITY 

Pocket calculators typically implement good routines to 

compute the exponential function and the natural logarithm, 

and then compute the square root of S using the 

identity
[citation needed]

 

 
The same identity is used when computing square roots with 

logarithm tables or slide rules. Method of bisecting 

intervals: 

A simple way to compute a square root is the high/low 

method, similar to the bisection method. This method 

involves guessing a number based on known squares, then 

checking if its square is too high or too low and adjusting 

accordingly. To find the square root of 20, first note that the 

square of 5 is 25, and that the square of 4 is 16. As 20 is 

greater than 16 and less than 25, the square root of 20 must 

be in between 4 and 5. Guessing 4.5, as the average of 4 and 

5, yields 20.25 and is too high. The next step is to guess 4.4, 

yielding 19.36 and is too low. Therefore, as before, the 

square root of 20 must be in between 4.4 and 4.5. Continue 

this pattern until the desired number of decimal places is 

achieved. For example: 

4.45
2
 = 19.8025 (too low) 

4.47
2
 = 19.9809 (too low, but close) 

4.48
2
 = 20.0704 (too high) 

4.475
2
 = 20.025625 (too high) 

4.473
2
 = 20.007729 (too high, but close) 

4.472
2
 = 19.998784 (too low) 

Now it is known that the square root of 20 is between 4.472 

and 4.473, so the square root of 20 to the first three decimal 

places is 4.472. 

III. BAKHSHALI APPROXIMATION 

This method for finding an approximation to a square root 

was described in an ancient Indian mathematical manuscript 

called the Bakhshali manuscript. It is equivalent to two 

iterations of the Babylonian method beginning with N [2]. 

The original presentation goes as follows: To calculate 

, let N
2
 be the nearest perfect square to S. Then, 

calculate: 

 

 

 

 
This can be also written as: 

 
 

Example (2): 

Find the square root of 152.2756. 

Solution : 

     √  01 52.27 56       is             1  2. 3  4   

 

         01                   1*1 ≤ 1 < 2*2                 x = 1 

         01                     y = x*x = 1*1 = 1 

         00 52                22*2 ≤ 52 < 23*3              x = 2 

         00 44                  y = (20+x)*x = 22*2 = 44 

            08 27             243*3 ≤ 827 < 244*4           x = 3 

            07 29               y = (240+x)*x = 243*3 = 729 

               98 56          2464*4 ≤  9856 < 2465*5        x = 4 

               98 56            y = (2460+x)*x = 2464*4 = 9856 

               00 00          Algorithm terminates: Answer is 12.34 

Example (3): 

Find the square root of   2   . 

 Solution:    

     √  02.00 00 00 00       is     

  1. 4  1  4  2 

         02                  1*1 <= 2 < 2*2                 x = 1 

         01                    y = x*x = 1*1 = 1 

         01 00               24*4 <= 100 < 25*5             x = 4 

         00 96                 y = (20+x)*x = 24*4 = 96 

http://en.wikipedia.org/wiki/Relative_error
http://en.wikipedia.org/wiki/Calculator
http://en.wikipedia.org/wiki/Exponential_function
http://en.wikipedia.org/wiki/Natural_logarithm
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Logarithm_table
http://en.wikipedia.org/wiki/Slide_rule
http://en.wikipedia.org/wiki/Bisection_method
http://en.wikipedia.org/wiki/Bakhshali_manuscript
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            04 00            281*1 <= 400 < 282*2           x = 1 

            02 81              y = (280+x)*x = 281*1 = 281 

            01 19 00         2824*4 <= 11900 < 2825*5       x = 4 

            01 12 96           y = (2820+x)*x = 2824*4 = 11296 

               06 04 00      28282*2 <= 60400 < 28283*3     x = 2 

The desired precision is achieved: 

The square root of 2 is about 1.4142 

Example (4) by discussion: 

Consider the perfect square 2809 = 53
2
. Use the duplex 

method to find the square root of 2,809. 

Solution: 

 Set down the number in groups of two digits. 

 Define a divisor, a dividend and a quotient to find the 

root. 

 Given 2809. Consider the first group, 28.  

o Find the nearest perfect square below that group. 

o The root of that perfect square is the first digit of 

our root. 

o Since 28 > 25 and 25 = 5
2
, take 5 as the first digit 

in the square root. 

o For the divisor take double this first digit (2 · 5), 

which is 10. 

 Next, set up a division framework with a colon.  

o 28: 0 9 is the dividend and 5: is the quotient. 

o Put a colon to the right of 28 and 5 and keep the 

colons lined up vertically. The duplex is calculated 

only on quotient digits to the right of the colon. 

 Calculate the remainder. 28: minus 25: is 3:  

o Append the remainder on the left of the next digit 

to get the new dividend. 

o Here, append 3 to the next dividend digit 0, which 

makes the new dividend 30. The divisor 10 goes 

into 30 just 3 times. (No reserve needed here for 

subsequent deductions.) 

 Repeat the operation.  

o The zero remainder appended to 9. Nine is the next 

dividend. 

o This provides a digit to the right of the colon so 

deduct the duplex, 3
2
 = 9. 

o Subtracting this duplex from the dividend 9, a zero 

remainder results. 

o Ten into zero is zero. The next root digit is zero. 

The next duplex is 2(3·0) = 0. 

o The dividend is zero. This is an exact square root, 

53. 

Example (5): (analysis and square root framework): 

Find the square root of 2809. 

Solution : 

Set down the number in groups of two digits. The number of 

groups gives the number of whole digits in the root. Put a 

colon after the first group, 28, to separate it. From the first 

group, 28, obtain the divisor, 10, since 28 > 25=5
2
 and by 

doubling this first root, 2x5=10. 

       Gross dividend:     28:  0  9. Using mental math: 

              Divisor: 10)     3  0   Square: 10)  28:  30  9 

    Duplex, Deduction:     25: xx 09  Square root:  5:   3. 0 

             Dividend:         30 00 

            Remainder:      3: 0 0 0 0 

Square Root, Quotient:      5:  3. 0 

Example ( 6) : 

Find the square root of 2.080180881 

Solution: 

By the duplex method: this ten-digit square has five digit-

pairs, so it will have a five-digit square root. The first digit-

pair is 20. Put the colon to the right. The nearest square 

below 20 is 16, whose root is 4, the first root digit. So, use 

2·4=8 for the divisor. Now proceed with the duplex 

division, one digit column at a time. Prefix the remainder to 

the next dividend digit. 

 divisor; gross dividend: 8) 20:  8   0   1   8    0   8   8   1 

read the dividend diagonally up: 4   8   7  11   10  10   0   8 

        minus the duplex:    16: xx  25  60  36   90 108  00  81 

         actual dividend:      : 48  55  11  82   10  00  08  00 

       minus the product:      : 40  48  00  72   00  00   0  00 

               remainder:     4:  8   7  11  10   10   0   8  00 

                quotient:     4:  5,  6   0   9.   0   0   0   0 

Duplex calculations: 

Quotient-digits ==> Duplex deduction. 

5       ==> 5
2
= 25 

5 and 6 ==> 2(5·6) = 60 

5,6,0   ==> 2(5·0)+6
2
 = 36 

5,6,0,9 ==> 2(5·9)+2(6·0) = 90 

5,6,0,9,0 ==> 2(5·0)+2(6·9)+ 0 = 108 

5,6,0,9,0,0 ==> 2(5·0)+2(6·0)+2(0·9) = 0 

5,6,0,9,0,0,0 ==> 2(5·0)+2(6·0)+2(0·0)+9
2
 = 81 

Hence the square root of 2,080,180,881 is exactly 45,609. 

Example (7): 

Find the square root of two to ten places.  

Solution: 

Take 20,000 as the beginning group, using three digit-pairs 

at the start. The perfect square just below 20,000 is 141, 

since 141
2
 = 19881 < 20,000. So, the first root digits are 141 

and the divisor doubled, 2 x 141 = 282. With a larger divisor 

the duplex will be relatively small. Hence, the multiple of 

the divisor can be picked without confusion. 

        Dividend: 2.0000 :    0    0     0     0     0     0    0    0 

Diagonal ;Divisor: (282)  : 1190  620   400  1020  1620  

1820  750 1120 

    Minus duplex:        : xxxx   16    16    12    28    53   74   

59 

 Actual dividend:  20000 : 1190  604   384  1008  1592  

1767  676 1061 

   Minus product:  19881 : 1128  564   282   846  1410  1692  

564  846 

       Remainder:    119 :   62   40   102   162   182    75  112  

215 

   Root quotient:   1.41 :    4    2     1     3     5     6    2    3 

Ten multiples of 282: 282; 564; 846; 1128; 1410; 1692; 

1974; 2256; 2538; 2820. 

IV. ITERATIVE METHODS FOR RECIPROCAL 

SQUARE ROOTS 

         The following are iterative methods for finding the 

reciprocal square root of S which is . Once it has 

been found, find by simple multiplication: 

. These iterations involve only 

multiplication, and not division. They are therefore faster 

than the Babylonian method. However, they are not stable. 

If the initial value is not close to the reciprocal square root, 

the iterations will diverge away from it rather than converge 

to it. It can therefore be advantageous to perform an iteration 

of the Babylonian method on a rough estimate before 

http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
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starting to apply these methods. 

 One method is found by applying Newton's method to 

the equation (1 / x
2
) − S = 0. It converges quadratically: 

 
 Another iteration obtained by Halley's method, which is 

the Householder's method of order two, converges 

cubically, but involves more operations per iteration: 

 

 

VI. TAYLOR SERIES 

If N is an approximation to , a better approximation 

can be found by using the Taylor series of the square root 

function: 

 

 
 

As an iterative method, the order of convergence is equal to 

the number of terms used. With 2 terms, it is identical to the 

Babylonian method; With 3 terms, each iteration takes 

almost as many operations as the Bakhshali approximation, 

but converges more slowly. Therefore, this is not a 

particularly efficient way of calculation. 

V. CONTINUED FRACTION EXPANSION 

Quadratic irrationals (numbers of the form , 

where a, b and c are integers), and in particular, square roots 

of integers, have periodic continued fractions. Sometimes 

what is desired is finding not the numerical value of a square 

root, but rather its continued fraction expansion. The 

following iterative algorithm can be used for this purpose (S 

is any natural number that is not a perfect square): 

 

 

 

 

 

 
Notice that mn, dn, and an are always integers. The algorithm 

terminates when this triplet is the same as one encountered 

before. The expansion will repeat from then on. The 

sequence [a0; a1, a2, a3, …] is the continued fraction 

expansion: 

 
 

Example (7): 

 Find the square root of 114 as a continued fraction 

Solution: 

     Begin with m0 = 0; d0 = 1; and a0 = 10 (10
2
 = 100 and 

11
2
 = 121 > 114 so 10 chosen). 

 

 

 

 
So, m1 = 10; d1 = 14; and a1 = 1. 

 
Next, m2 = 4; d2 = 7; and a2 = 2. 

 

 

 

 

 
Now, loop back to the second equation above. 

Consequently, the simple continued fraction for the square 

root of 114 is 

 
Its actual value is approximately 10.67707 82520 31311 

21.... 
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http://en.wikipedia.org/wiki/Rate_of_convergence
http://en.wikipedia.org/wiki/Taylor_series
http://en.wikipedia.org/wiki/Square_root
http://en.wikipedia.org/wiki/Order_of_convergence
http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Bakhshali_approximation
http://en.wikipedia.org/wiki/Quadratic_irrational
http://en.wikipedia.org/wiki/Periodic_continued_fraction
http://en.wikipedia.org/wiki/Continued_fraction
http://en.wikipedia.org/wiki/Natural_number
http://en.wikipedia.org/wiki/Square_number
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Generalized continued fraction: 

A more rapid method is to evaluate its generalized continued 

fraction. From the formula derived there: 

 
the square root of 114 is quickly found: 

 
 

Furthermore, the fact that 114 is 2/3 of the way between 

10
2
=100 and 11

2
=121 results in 

 

 
 

which is simply the aforementioned [10;1,2, 10,2,1, 20,1,2, 

10,2,1, 20,1,2, ...] evaluated at every third term. Combining 

pairs of fractions produces 

 

 
 

which is now [10;1,2, 10,2,1,20,1,2, 10,2,1,20,1,2, ...] 

evaluated at the third term and every six terms thereafter. 

Section(3) 

VII. NEWTON'S METHOD 

Introduction: 

In this section we are going to look at a method for 

approximating solutions to equations.  We all know that 

equations need to be solved on occasion and in fact we’ve 

solved quite a few equations ourselves to this point.  In all 

the  examples we’ve  looked at to this point we were able to 

actually find the solutions, but it’s not  always possible  to 

do that exactly and/or do the work by hand.  That is where 

this application comes into play.  So, let’s see what this 

application is all about. Newton's Method attempts to 

construct a sequence xn from an initial guess x0 that 

converges towards 𝑥∗such that . This is𝑥∗ 
called a stationary point of   f . 

The second order Taylor expansion fT(x) of the function 

around xn (where Δx = x − xn) is: 

, attains its extremum when its derivative with respect to Δx 

is equal to zero, i.e. when Δx solves the linear equation: 

 
(Considering the right-hand side of the above equation as a 

quadratic in  Δx, with constant coefficients.) Thus, provided 

that is a twice-differentiable function well 

approximated by its second order Taylor expansion and the 

initial guess   is chosen close enough to 𝑥∗, the sequence 

(xn) defined by:  

 
will converge towards a root of f', i.e. x * for which f'(x * ) = 

0. 

Newton's method :  

        Newton's method (also known as the Newton–Raphson 

method), named after Isaac Newton and Joseph Raphson, is 

a method for finding successively better approximations to 

the roots (or zeroes) of a real-valued function. The algorithm 

is first in the class of Householder's methods, succeeded by 

Halley's method. 

VIII. THE NEWTON-RAPHSON METHOD IN ONE 

VARIABLE 

Given a function ƒ(x) and its derivative ƒ '(x), we begin with 

a first guess x0 for a root of the function. Provided the 

function is reasonably well-behaved a better approximation 

x1 is 

 
Geometrically, x1 is the intersection with the x-axis of a line 

tangent to f at f(x0). The process is repeated until a 

sufficiently accurate value is reached: 

 
The idea of the method is as follows: one starts with an 

initial guess which is reasonably close to the true root, then 

the function is approximated by its tangent line (which can 

be computed using the tools of calculus), and one computes 

the x-intercept of this tangent line (which is easily done with 

elementary algebra). This x-intercept will typically be a 

better approximation to the function's root than the original 

guess, and the method can be iterated. Suppose 

ƒ : [a, b] → R is a differentiable function defined on the 

interval [a, b] with values in the real numbers R. The 

formula for converging on the root can be easily derived. 

Suppose we have some current approximation xn. Then we 

can derive the formula for a better approximation, xn+1 by 
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referring to the diagram on the right. We know from the 

definition of the derivative at a given point that it is the 

slope of a tangent at that point. That is 

 
Here, f ' denotes the derivative of the function f. Then by 

simple algebra we can derive 

 
We start the process off with some arbitrary initial value x0. 

(The closer to the zero, the better. But, in the absence of any 

intuition about where the zero might lie, a "guess and check" 

method might narrow the possibilities to a reasonably small 

interval by appealing to the intermediate value theorem.) 

The method will usually converge, provided this initial 

guess is close enough to the unknown zero, and that ƒ'(x0) 

≠ 0. Furthermore, for a zero of multiplicity 1, the 

convergence is at least quadratic (see rate of convergence) in 

a neighborhood of the zero, which intuitively means that the 

number of correct digits roughly at least doubles in every 

step. More details can be found in the analysis section 

below. The Householder's methods are similar but have 

higher order for even faster convergence. However, the 

extra computations required for each step can slow down the 

overall performance relative to Newton's method, 

particularly if f or its derivatives are computationally 

expensive to evaluate. 

IX. PROOF OF QUADRATIC CONVERGENCE FOR 

NEWTON'S ITERATIVE METHOD 

According to Taylor's theorem, any function f(x) which has 

a continuous second derivative can be   by an expansion 

about a point that is close to a root of f(x). Suppose this root 

is Then the expansion of f(α) about xn is: 

 

  
  

  
  

 

  

(1) 

where the Lagrange form of the Taylor series expansion 

remainder is 

 
where ξn is in between xn and  

Since is the root, (1) becomes: 
 

  
  
  
  

 

(2) 

Dividing equation (2) by and rearranging gives 

 

  
  

  
  

 

   

(3) 

Remembering that xn+1 is defined by 

 

  
  

  
  

 

(4) 

one finds that 

 

That is, 

 

  
  

  
  

 

(5) 

Taking absolute value of both sides gives 

 

  
  

  
  

 

(6) 

 

Equation (6) shows that the rate of convergence is quadratic 

if 1-

following conditions are satisfied: 

1.  
2.   sufficiently close to the root  

The term sufficiently close in this context means the 

following: 

(a) Taylor approximation is accurate enough such that 

we can ignore higher order terms, 

(b) 

 
(c) 

 
Finally, (6) can be expressed in the following way: 

 
where M is the supremum of the variable coefficient of 

on the interval defined in the condition 1, that is: 

 
The initial point  has to be chosen such that conditions ( 

1) through ( 3) are satisfied, where the third condition 

requires that  

X. MINIMIZATION AND MAXIMIZATION 

PROBLEMS (NEWTON'S METHOD IN 

OPTIMIZATION) 

Newton's method can be used to find a minimum or 

maximum of a function. The derivative is zero at a 

minimum or maximum, so minima and maxima can be 

found by applying Newton's method to the derivative. The 

iteration becomes: 

 
Examples:   ( Square root of a number) 

Consider the problem of finding the square root of a 

number. There are many methods of computing square 

roots, and Newton's method is one. 

Example( 8): 

Find the square root of 612, this is equivalent to finding the 

solution to  

The function to use in Newton's method is then, 
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Where 𝑓 ′ 𝑥 = 2𝑥 

With an initial guess of 10, the sequence given by Newton's 

method is: 

 
 

Where the correct digits are underlined. With only a few 

iterations one can obtain a solution accurate to many 

decimal places. 

Example( 9):  

Solve  :    cos(x) = x
3
 

Solution: 

Consider the problem of finding the positive number x with 

cos(x) = x
3
. We can rephrase that as finding the zero of f(x) 

= cos(x) − x
3
. We have f'(x) = −sin(x) − 3x

2
. Since cos(x) ≤ 1 

for all x and x
3
 > 1 for x > 1, we know that our zero lies 

between 0 and 1. We try a starting value of x0 = 0.5. (Note 

that a starting value of 0 will lead to an undefined result, 

showing the importance of using a starting point that is close 

to the zero.) 

 

 
 

The correct digits are underlined in the above example. In 

particular, x6 is correct to the number of decimal places 

given. We see that the number of correct digits after the 

decimal point increases from 2 (for x3) to 5 and 10, 

illustrating the quadratic convergence. Sometimes we are 

presented with a problem which cannot be solved by simple 

algebraic means. For instance, if we needed to find the roots 

of the polynomial , we would find that 

the tried and true techniques just wouldn't work. However, 

we will see that calculus gives us a way of finding 

approximate solutions.  

A Simple Example : 

      Let's start by computing . Of course, this is easy if 

you have a calculator, but it is a simple example which will 

illustrate a more general method.  First, we'll think about the 

problem in a slightly different way. We are looking for 

which is a solution of the equation .  

The problem is that it is difficult to generate a numerical 

solution to this equation. But remember in the section on 

approximations , we saw how to approximate a function 

near a given point by its tangent line. The idea here will be 

to actually solve the approximate equation which is easy 

since it is a linear one.  

If we think for a minute, we know that is between 2 

and 3 so let's just choose to use the linear approximation at 

. We know that so that 

. The linear approximation is then  

 
Notice that the linear equation is easy to solve. We will then 

approximate the solution to by the solution to 

which is . If you 

have a look on a calculator, you will see that 

. So you can see that we have found a 

fairly good approximation.  

We can understand what we have done graphically. We are 

looking for a solution to which is where the 

graph of crosses the X-axis. We approximate that 

point by the point where the tangent line crosses the X-axis 

Now this is where the story becomes interesting since we 

can repeat what we have just done using the new 

approximate solution. That is, we will call and 

consider the linear approximation at that point.  

 

Now if we call the solution to , we find that 

which is an even better approximate 

solution to the equation. We could continue this process 

generating better approximations to at every step. This 

is the basic idea of a technique known as Newton's Method 

The general method:  

        More generally, we can try to generate approximate 

solutions to the equation using the same idea. 

Suppose that is some point which we suspect is near a 

solution. We can form the linear approximation at and 

solve the linear equation instead.  

That is, we will call the solution to 

. In other 

words,  
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If our first guess was a good one, the approximate 

solution should be an even better approximation to the 

solution of . Once we have , we can repeat 

the process to obtain , the solution to the linear equation  

 
Solving in the same way, we see that  

 
Maybe now you see that we can repeat this process 

indefinitely: from , we generate and so on. If, after n 

steps, we have an approximate solution , then the next 

step is  

 

Provided we have started with a good value for , this 

will produce approximate solutions to any degree of 

accuracy.  

XI. PRACTICAL CONSIDERATIONS 

Newton's method is an extremely powerful technique—in 

general the convergence is quadratic: as the method 

converges on the root, the difference between the root and 

the approximation is squared (the number of accurate digits 

roughly doubles) at each step. However, there are some 

difficulties with the method shown at the end of this thiese  

in the appendix. 

Section(4) 

A  Matlab program to the Newton's method  applied to some 

problems: 

Example (1): 

This example solves the system of two equations and two 

unknowns: 

 
Start your search for a solution at 𝑥0 = [-5 -5]. 

𝑥 = 

    0.5671 

    0.5671 

fval = 

  1.0e-006 * 

      -0.4059 

      -0.4059 

Example (2): 

Find a matrix X  that satisfies the equation 

  
starting at the point X= [1,1; 1,1].  

x = 

    -0.1291    0.8602 

     1.2903    1.1612  

 

Fval = 

  1.0e-009 * 

   -0.1621    0.0780 

    0.1164   -0.0467 

 

exitflag = 

     1 

ans =  

  4.8081e-020 

Notes: 

If the system of equations is linear, use\ (matrix left 

division) for better speed and accuracy. For example, to find 

the solution to the following linear system of equations: 

3x1 + 11x2 – 2x3 = 7 

x1 + x2 – 2x3 = 4 

x1 – x2 + x3 = 19. 

Formulate and solve the problem as 

A = [ 3 11 -2; 1 1 -2; 1 -1 1]; 

b = [ 7; 4; 19]; 

x = A\b 

x = 

   13.2188 

   -2.3438 

    3.4375 

XII. APPENDIX 

Difficulty in calculating derivative of a function: 

Newton's method requires that the derivative be calculated 

directly. An analytical expression for the derivative may not 

be easily obtainable and could be expensive to evaluate. In 

these situations, it may be appropriate to approximate the 

derivative by using the slope of a line through two nearby 

points on the function. Using this approximation would 

result in something like the secant method whose 

convergence is slower than that of Newton's method. Failure 

of the method to converge to the root: 

It is important to review the proof of quadratic convergence 

of Newton's Method [2] before implementing it. 

Specifically, one should review the assumptions made in the 

proof. For situations where the method fails to converge, it 

is because the assumptions made in this proof are not met. 

Overshoot: 

If the first derivative is not well behaved in the 

neighborhood of the root, the method may overshoot, and 

diverge from the desired root. Furthermore, if a stationary 

point of the function is encountered, the derivative is zero 

and the method will terminate due to division by zero. 

Poor initial estimate: 

A large error in the initial estimate can contribute to non-

convergence of the algorithm. Mitigation of non-

convergence: 

In a robust implementation of Newton's method, it is 

common to place limits on the number of iterations, bound 

the solution to an interval known to contain the root, and 

combine the method with a more robust root finding 

method. 

Slow convergence for roots of multiplicity > 1: 

If the root being sought has multiplicity greater than one, the 
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convergence rate is merely linear (errors reduced by a 

constant factor at each step) unless special steps are taken. 

When there are two or more roots that are close together 

then it may take many iterations before the iterates get close 

enough to one of them for the quadratic convergence to be 

apparent. However, if the multiplicity m of the root is 

known, one can use the following modified algorithm that 

preserves the quadratic convergence rate: 

 

XIII. ANALYSIS 

Suppose that the function ƒ has a zero at α, i.e., ƒ(α) = 0. 

If f  is continuously differentiable and its derivative is 

nonzero at α, then there exists a neighborhood of α such that 

for all starting values x0 in that neighborhood, the sequence 

{xn} will converge to α. If the function is continuously 

differentiable and its derivative is not 0 at α and it has a 

second derivative at α then the convergence is quadratic or 

faster. If the second derivative is not 0 at α then the 

convergence is merely quadratic [5].If the third derivative 

exists and is bounded in a neighborhood of α, then: 

 
 

where  

If the derivative is 0 at α, then the convergence is usually 

only linear. Specifically, if ƒ is twice continuously 

differentiable, ƒ '(α) = 0 and ƒ ''(α) ≠ 0, then there exists a 

neighborhood of α such that for all starting values x0 in that 

neighborhood, the sequence of iterates converges linearly, 

with rate log10 2 (Süli & Mayers,). Alternatively if ƒ '(α) = 0 

and ƒ '(x) ≠ 0 for x ≠ 0, x in a neighborhood U of α, α being 

a zero of multiplicity r, and if ƒ ∈ C
r
(U) then there exists a 

neighborhood of α such that for all starting values x0 in that 

neighborhood, the sequence of iterates converges linearly. 

However, even linear convergence is not guaranteed in 

pathological situations. In practice these results are local and 

the neighborhood of convergence are not known a priori, but 

there are also some results on global convergence, for 

instance, given a right neighborhood U+ of α, if f is twice 

differentiable in U+ and if , in U+, 

then, for each x0 in U+ the sequence xk is monotonically 

decreasing to α. 

XIV. FAILURE ANALYSIS 

Newton's method is only guaranteed to converge if certain 

conditions are satisfied. If the assumptions made in the 

proof of Quadratic Convergence are met, the method will 

converge. For the following subsections, failure of the 

method to converge indicates that the assumptions made in 

the proof were not met. 

XV. BAD STARTING POINTS 

In some cases the conditions on function necessary for 

convergence are satisfied, but the point chosen as the initial 

point is not in the interval where the method converges. In 

such cases a different method, such as bisection, should be 

used to obtain a better estimate for the zero to use as an 

initial point.  

Iteration point is stationary: 

Consider the function: 

 
It has a maximum at x=0 and solutions of f(x) = 0 at x = ±1. 

If we start iterating from the stationary point x0=0 (where 

the derivative is zero), x1 will be undefined, since the 

tangent at (0,1) is parallel to the x-axis: 

 
The same issue occurs if, instead of the starting point, any 

iteration point is stationary. Even if the derivative is small 

but not zero, the next iteration will be a far worse 

approximation Starting point enters a cycle: 

 

 

 
The tangent lines of x

3
 - 2x + 2 at 0 and 1 intersect the x-axis 

at 1 and 0 respectively, illustrating why Newton's method 

oscillates between these values for some starting points[7]. 

For some functions, some starting points may enter an 

infinite cycle, preventing convergence. Let 

 
and take 0 as the starting point. The first iteration produces 1 

and the second iteration returns to 0 so the sequence will 

alternate between the two without converging to a root. In 

general, the behavior of the sequence can be very complex. 

(See Newton fractal.) 

XVI. DISCONTINUOUS DERIVATIVE 

If the derivative is not continuous at the root, then 

convergence may fail to occur in any neighborhood of the 

root. Consider the function 

 
Its derivative is: 

 
Within any neighborhood of the root, this derivative keeps 

changing sign as x approaches 0 from the right (or from the 

left) while f(x) ≥ x − x
2
 > 0 for 0 < x < 1. 

So f(x)/f'(x) is unbounded near the root, and Newton's 

method will diverge almost everywhere in any 

neighborhood of it, even though: 

 the function is differentiable (and thus continuous) 
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everywhere; 

 the derivative at the root is nonzero; 

 f is infinitely differentiable except at the root; and 

 the derivative is bounded in a neighborhood of the  

 root (unlike f(x)/f'(x)). 
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