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Abstract: In mathematics, the search for exact formulas giving 

all the prime numbers, certain families of prime numbers or the 

n-th prime number has generally proved to be vain, which has led

to contenting oneself with approximate formulas [8]. The

purpose of this article is to give a new proof of the Riemann

hypothesis [4]-which is closely related to the distribution of prime

numbers- by y introducing Ŝ a new extension of the of the

Riemann zeta function   
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In memory of the great professor, the physicist and 

mathematician, Moshé Flato. 

I. INTRODUCTION, RECALL, NOTATIONS

AND DEFINITIONS 

Prime numbers [See 3, 4, 5, 6, 7, 8] are used especially in 

information technology, such as public-key cryptography 

which relies on factoring large numbers into their prime 

factors. And in abstract algebra, prime elements and prime 

ideals give a generalization of prime numbers. In 

mathematics, the search for exact formulas giving all the 

prime numbers, certain families of prime numbers or the n-

th prime number has generally proved to be vain, which has 

led to contenting oneself with approximate formulas [8]. 

Recall that Mills' Theorem [8]: "There exists a real number 

A, Mills' constant, such that, for any integer n > 0, the 

integer part of  A
3

n

  is a prime number" was demonstrated 

in 1947 by mathematician William H. Mills , assuming the 

Riemann hypothesis [4, 5, 6,7] is true. Mills' Theorem [8] is 

also of little use for generating prime numbers. Recall that a 

link has been established between the prime numbers, the 

zeros of the Riemann zeta function and the energy level of 

various quantum systems [see 1 and 2 ] The purpose of this 

article is to to give a new proof of the Riemann hypothesis 

[4]. by y introducing Ŝ a new extension of the of the 

Riemann zeta function. 
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II. THE PROOF OF THE RIEMANN

HYPOTHESIS 

Theorem: The real part of every nontrivial zero of the 

Riemann zeta function is 1/2. 

The link between the function ζ    and the prime numbers

had already been established by Leonhard Euler with the 

formula [5], valid for  ℜ(s)>1   :

ζ (s)=∏ p∈P

1

1− p
− s

=
1

(1−
1

2
s
)(1−

1

3
s
)(1−

1

5
s
)…

where the infinite product is extended to the set 
P

of prime

numbers. This formula is sometimes called the Eulerian 

product. 

And since the Dirichlet eta function can be defined by 

η (s)= (1− 21− s)ζ (s)
  where: 

η (s)=∑
n= 1

∞ (− 1)
n− 1

n
s

We have in particular: 

ζ (z)=
1

1− 2
1− z

∑
n= 1

∞

(− 1)n− 1

n
z

for 0<ℜ (z)<1 

Let s= x+iy , with 0<ℜ (s)<1
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ζ (s)ζ (s)=∏p∈P

1

1− p− s

1

1− p− s
=∏p∈P

1

(1− e− xln(p)cos( yln( p)))2+(e− xln( p)sin( yln( p)))2
 

But :

∏p∈P

1

(1− e− xln( p)cos( yln( p)))2+(e− xln( p)sin( yln( p)))2
≥∏p∈P

1

(1+e− xln( p))2+(e− xln( p))2

 

If ζ (s)= 0 , then 

∏p∈P

1

(1+e− xln(p))2+(e− xln( p))2
= 0

 and since the non-trivial zeros of ζ (s)= 0  are symmetric with 

respect to the line 
X=

1

2    because the zeta function satisfies the functional equation [ 4, 6] : 

 

ζ (s)= 2
s
π

s− 1
sin(

π s

2
)Γ (1− s)ζ (1− s)

 

then 
x=

1

2
+α

, and if 
s'=

1

2
− α +iy

, then ζ (s' )= 0  

But the function  

1

(1+e
− tln( p)

)
2
+(e

− tln(p)
)
2

   is increasing in 
[ 0,1]

, so  

∏p∈P

1

(1+e
− tln(p)

)
2
+(e

− tln( p)
)
2
= 0

 

∀ t∈[
1

2
− α ,

1

2
+α ]

 

As 

∏p∈P

1

(1+e− zln( p))2+(e− zln( p))2

is holomorphic: because: 

∏p∈P

1

(1+e− zln( p))2+(e− zln( p))2
=∏p∈P

1

1− A/ pz

1

1− B/ pz

  with  A= i− 1  and B=− i− 1, and both  

∏ p∈P

1

1− A/ p
z

  and  
∏ p∈P

1

1− B/ p
z

   are holomorphic in 
{z∈ℂ∖{1} ,ℜ (z)≥

1

2
}

 

 

 as we have: 

 

∏ p∈P

1

1− A/ p
z
=∏ p∈P

1+f p( z)
 with 

f p(z)=
1

(p
z
/ A)− 1

. 

 

|f p(z)|≤
1

|pz
/ A|− 1

=
1

( p
ℜ(z)

/√2)− 1
≤

k

p
1

2
, where k is a positive real constant. 

So 

|∑ p∈P ,p= N

∞

f p(z)|≤ k|∑ p= N

∞ 1

n
1

2|= k|ζ N(
1

2
)|

 

But (see Lemma 1 [6]): 
ζ N (

1

2
)= oN (1)

 

We deduce that the series 
∑

p
|f p|

  converges normally on any compact of 

{z∈ℂ∖{1} ,ℜ (z)≥
1

2
}

 and consequently 

∏ p∈P

1

1− A/ p
z

  is holomorphic in 
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{z∈ℂ∖{1} ,ℜ (z)≥
1

2
}

 

In the same way    

∏ p∈P

1

1− B/ p
z

  is holomorphic in 
{z∈ℂ∖{1} ,ℜ (z)≥

1

2
}

  

If α ≠ 0 , then the holomorphic function 

∏p∈P

1

(1+e− zln( p))2+(e− zln( p))2

 

 will be null (because null on  
]
1

2
,
1

2
+α ]

 ), and it follows that 

∏ p∈P

1

1− A/ p
z

  or 

∏ p∈P

1

1− B/ p
z

  is null in 

{z∈ℂ∖{1} ,ℜ (z)≥
1

2
}

. Let's show that this is impossible: 

 

If 

∏ p∈P

1

1− A/ p
z
=∏ p∈P

1+f p( z)= 0
 with 

f p(z)=
1

(p
z
/ A)− 1

. 
∀ z∈ℂ∖{1} ,ℜ(z)≥

1

2  

 . So for the same reason as above, the application: 

   

Ŝ : 

X→∏ p∈ P

1

1− X / p
z

  is holomorphic in the open quasi-disc D= {X∈ℂ ,0<|X|<√2}  with 
z∈ℂ ∖{1},ℜ(z)≥

1

2    

Let's extend the function Ŝ by setting: 

For 
z∈ℂ ∖{1},ℜ(z)>

1

2  and  ∀ s∈ℝwiths ≤ 0such asℜ(s+z)≥ 0   

Ŝ(C/qs)=∏p∈P

1

1−C/(qs pz)
  (where q is a prime number, and C is such that |C|=√2  )   

In particular we have: 

Ŝ( A/qs)=∏ p∈P

1

1− A/(qs pz)
 (where q is a prime number)   

But for  
z∈ {z∈ℝ∖{1} ,z>

1

2
}

we have: 

∏p∈P| 1

1− A/(qs pz)|≤∏p∈P| 1

1− A/( pz)|
 

 

It follows that: 

  
Ŝ( A/qs)= 0

 
 So : 

 

Ŝ( X)= 0,∀ X∈D
 

   

  And consequently: 

    

     
Ŝ(1)(z)= ζ (z)= 0 ∀ z∈ {z∈ℂ ∖{1},ℜ(z)>

1

2
}
 

   which is absurd, so 
α = 0

, hence the Riemann hypothesis.  
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III. CONCLUSION 

By considering the Riamann zeta function as an action on 

the particles of the complex plane, I showed that on the 

positive half plane, the zeta action can only be canceled on 

the line 
x=

1

2  . 

The idea was to study the square modulus of the zeta 

function. And assuming that the function vanishes at a point 

in the band 0<ℜ (z)<1 and outside the line 
x=

1

2 , by 

symmetry of the roots the square function of zeta module - 

which is a real function- will cancel on two reals a and b, 

and by the growth of the square function of the zeta module 

on [a, b], the square function of the module will cancel on 

[a, b]. But by extending the square function of the zeta 

module by a holomorphic function, the latter must be zero 

because the roots of a non-zero holomorphic function are 

separated. And by decomposing this last function into two 

holomorphic functions, one of them will be zero and will 

imply that the zeta function will be zero, which is absurd. 
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