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Generalization of Konhauser Polynomials

Mamta Dassani, Mukesh kushwaha

Abstract: In this paper, we are showing study of biorthogonal
polynomials associated with generalization of Laguere
polynomials of Srivastava and Singhal [14]. It happens to
generalized Konhauser. here we are trying to obtain the
generating functions, recurrence relations, biorthogonality
relations, integral representations and also bilinear and bilateral
generating relations for the new class of biorthogonal system.
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l. INTRODUCTION

The concept of two polynomials explain by Didon [1]

and Deruyts [2] considered this concept in some detail. For
example, given the set {Pn(x)} the set {Qn(x)} is uniquely
determined and conversely over the different interval.
considered this concept in some detail, and claimed that for
these two polynomials. the set of polynomials in x, {P, (X)}
and {Q,(})}, deg. Q, (X)=n, (n=0,1,2,.....) are said to be
biorthogonal with respect to distribution dot (x) on interval
[a,b] if:

T P.(x)Q, (x)da(x)=0,m=n =0,m=n

where o (x) is a distribution function on interval (finite or
infinite) with infinitely many points of increase and such

b
that :J X”d(x(x)< oo, for all n=0, 1,2,....
a

Not much attention was paid to the study of biorthogonal
system of polynomials, till Spencer and Fano [3]
encountered a pair of biorthogonal polynomials, while
dealing with a problem related to the study of penetration
and diffusion of X-Rays, and subsequently studies were
made by Preiser [4] in ordinary differential equation of the
third order and it also recommend for higer order form
.Konhauser [5] , Carlitz [6] , Prabhakar and Kashyap [7] and
Prabhakar & Tomar [9] describe some results on
biorthognal  function suggested by the Laguerre
polynomials. Rahman [8] also expressed some explicit
function of unearization coefficient of the product of Jacobi
polynomials ,
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Madhekar and Thakare [10] has work on Biorthogonal
polynomials suggested by the Jacobi polynomials and Al-
Salam and Verma [11] also described Analogues of some
biorthogonal function. Both Didon and Deruyts paid special

attention to the situation in which P, (X) is a polynomial of

degree n in x* (k fixed)

In this paper, we shall study the generalization of
biorthogonal ~ Polynomials suggested by Konhauser
polynomials over the interval (0, o0) with respect to the

distribution function W(X)z X* exp (— prr)dx and also
Obtain associated generating relations for
Y (x,r,p,k)and 2 (x,r,p,k). we

polynomials fo‘)(x,r,p, k), which are introduced by
Srivastava and Singhal [14] and in attempt to provide an
elegant unification of wvarious known generalized of
classical Hermite and Laguerre polynomials. These
polynomials are defined by the generalized Rodrigues’s
formula

G (x,r,p,k)=x""exp (pxr(;!j (Xme)n {x“ exp (— pxr)},

where D, =d/dX and parameters o,k,p and r are
unrestricted in general. The explicit expansion is given as

o K'| & 1\ (1) (1j+a
GY (xrpk)=| =Y x| = |3 (1] 2w
n )i )= LUk )
It is worth mentioning here that Srivastava and Singhal [14],
Chandel [1] and Srivastava, P.N. [16] also consider the
polynomials defined

Y (x,K) = k"G (x 11 k) @

n
Thus, we observe that (2) provides a generalization of one
member of the pair of Konhauser biorthogonal polynomials.
This leads us to consider pair biorthogonal polynomials, one
of which is connected with (1)

recall the

1. PRELIMINARIES

A. Generalized konhauser polynomials

In this section, we included the different kind of relation
which are pair of biorthogonal sets of polynomials see
[12,13,15].

Y (x,r,p,k)and Z™ (x,r,p,k)., where Z(*) (x,r,p,k) is a

polynomial of degree n in Xk, (k is fixed integer) while

Y{*)(x,r,p,k) is a polynomial of degree n in, X', (r is
fixed integer

71 (x,r,p, k):M Zn: (_gm[”j {(pkm/rka (3)

m

kn/r

p' o] a+1+km)/r}
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Y@ (xrpkzllnlzn:

> sl @

o and k/r is a positive integer.

M;

where (o +1)/r >0

B. First biorthogonal relation
The polynomials sets
YrE“)(X, rp, k) and Zﬂf‘)(x, rp, k) are biorthogonal

with respect to the distribution function w (x) = x (@) exp

(-px") over the interval (0, o)
The biorthogonal relation is given by (4)

(k) zy T{{a+1+kn)ir}

rm! p(u+1+kn)/ r

Tx“ exp (- px) ) (z,r,p;k) dx = dm,n

0
where dM, N is Kronecker delta and k/r is a positive
integer. We shall prove this relation later on.

2 (x.r, pik)

C. Generating function for and

Y (%, r,piK)
use (2), we have

n km/r, km
7 (x.r.pk :M L
n (X rp ) pkn/r mZ(:) {((x +1+ km)/ l’}

km/r, km

_(adiima, oy X
DT ™ miT {(o+1+km)/r}

km/r, km

(fa+1ir)q nz”: pmxn) ®)
k”” b m!q“”‘ ﬁ [{a+1)/r+s-1}q]

:Wa 0 (o t)m....fu st (-2 o i

thus, Z(n“) (x,r,p;k) is in the hypergeometric form.
where k/r=q, a positive integer.

z (x,r,p:k)

n! m=0

7 (x,r,p;k) =

Now,

) » n pqukm
Z x,r,pq [ j

L%l Zo !‘*;) (lw+1)re),
 w Sa(nem tn+m km

TEw [n J q

n=0 m=0 n+m)p a(n+m) H 0,+1/|’ +5 1}/q]

s=1

( 1)m kmt

m!li[ (@ +1)/r)+s-11/q]

(6)
=exp (-t/p)"" JF, |olot )i fo 41+ 1{g -1 g (-x/q)" t]

which is the generating function for Z (X, r, p;q).
use (1) and (2), we observe that

Y (P k) =k "GE (x,r,pik) )
Hencey® (X'r'p;k)zw (XMD)" [XM exp(— pxr)]

Now using the analogues result,
generating function for Y= (x,r,p; k) as:

i Yo (x,r k)t = (1—t) " exp [px {1 (1-ty ”k}]
n=0

we get a

(8)
D. Second biorthogonal relation

We have to prove relation (4)
Consider,,,
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s

n=0

. . 1 )
!xexp LUYnxrpk HZZ xrpk){({aﬂ}/r)qn}u}dx

Ix oxp (- px’)[(l t) % exp [—pxr{—l—t’”k}]] exp (~t/p)"

)

3

I X exp-px ) Y (o pk)Z2 (1, k) L{“Oﬂl}”)] u"t"dx

= oF; | (a+2)/rq,... {o+1+ r(q—l)}/rq;(x/q)’"u]
[Using (4) and (5)]

()= e (Curp) o 7 XM exp |-px’ {1t |dx
b em bt & o[ e om0

after some simplification, we get; (9)

fx exp(px ZY xrpk)t {ZZ X,1,p;k [ /r)qm}uﬂdx:
LU o ) T 5 ) fuor
m- )

- rp{(a+1)/r,

Comparing the coefficient of U™t" on both sides of (9) we

mgn
t

see that the coefficient of U when n # m, then the right
hand member of (9) is zero and when n=m then the right
hand member is non zero.

1. INTEGRAL REPRESENTATIONS

A. integral representation for v (x, r, p, k)
Osler [5] has given a fractional derivative formula as:
@ f(@)a(z) (h@)-h(w) |
Py 1 ()} = ity { @ L9G)-ow)

where D("-) f(2)} denotes the fractional derivation of

order anth respect to g ().

Foree — m h(z)=z, we have

D {f(z)}= D" {f (2)(2) (g(zz):;v(w))l} me 012.........
e (10)

For the relatively more familiar derivative of order m now
from (10), we have

~L+nk-a
Y®(x,r,p,k)=

and

exp (px') (D, ' e expl-px' )

= kxn’!“’l exp (- px') (Dx)’ { X4 exp (- pxr){(x)k(:ik] ﬂ (11)

from (11), we get integral representation as :

kriaihkn J; I:exp {p(u e )}uf”kn :| du (12)

2 DR
taking u=y (1+t) and after simple manipulation, we get

Yr‘f(x, r,p; k) - L D" |:(1+ t)a+kn exp {7 pxr(1+ t)r 71} tn+1:|
2r gy
(13)

(@roy -1
from (15), we easily write the integral representation for
Y (x,r,p;k) as:

Yy (%1, pik) =

ve (rpik) = K J- @+t)*™ " exp { px"@+t) _l}d N

(14)

271:l

(@+or -2y
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which C is a closed contour enclosing t=0, but excluding
t=1 and the roots of the equation (t+1)*-1=0

B. Integral representation for z¢ (x,r, p; k)
We consider,

T exp (— ps'x')tﬁZﬁ (x,r,p; k) dt

o

_ {((x+1+kn /r} . pkmlrka K prkm nely’
2 O arzea ) U e e
F{(a+1+kn) rh r{(km+p+1)/r} K
_ J _ /
pkmP/Ty pigtP >, (=), miT {(o+1+ km)/r} (x/s)
(15)

{(kn+a+1)/r}, . -n,(B+0)/rq.... p+1+r(-1)}/rq
T s S (o 0) 1, (o + 14 1)/ 1 o+ 1 1(g - 1)/ 1))

particular for o =3, (15) reduces to the following form :

Tf{astekn)/r s -xt)
B P(kn+a+1) rn|31+a+k"

: (x/s)k} In

r n| Sl+a+kn

T exp (- ps'x’ )2 (x,r,p;k) e

0
(16)
now applying inverse Laplace transform techniques to
(16),we get the integral representation for z(*) (x,r,p; k)

miu™” ur 1 ¢ exp (ut)(t/p) -1
Frariay & U ek o] pﬂﬁiw L
(17)

putting u = X" and t = ps" in (17), we get:

exp (ps'x’ [s —1]

n! p(1+a—r+kn)lrxa7r+1

C{{l+o+kn)/r} Z3" (xrprk) = 2rii -[ glzrocreka) s
(18)
where c is contour enclosing s=0 when o, r,k and n are
integers.

We also have differential formula for z« (x, r, p; k) as

PR e T pesr | 20X 1] -]
T{L+a+kn)r} Q+o-r+kn) Sferoreia) )
(19)

In particular, the above result reduces to the corresponding
result Spencer and Feno (3) and Konhauser (5).

V. RECURRENCE RELATIONS

The polynomials Y* (x,r,p;k) and Z© (x,r,p;k)
satisfy the recurrence relation

A. The recurrence relation for era) (X, rp; k)

(D, —prx™ ) Y (x, 1 prk) = (- prx Y (x,r, pik)
(20)

(P r D, )Y (¢, 1 pik) = =Y (x, 1, pi k)
21) (oD, —1)" Y (x,1,p:k) = (=1" Y™ (x,1,pik)
(22)( prix"'D, +1) Y@ (x,r,p;k) = Y (x,r,prk)
(23)

where k/r=q is a positive integer.

[(— prix''D, +1)q —1] Y (x,r,pk)= Y5 (x,r,pk)  (24)
Y (x, k) - Y (x,r,pik) = YN (x,rpik)  (25)
(xD ratkn—prd )Y (x,r,p:k) =k (n+1) Y (x,r,p;k)  (26)
(D, +o+1-k—prx’ ) Y (x,r,p;k) = k(n + )Y Y (x,r,pik) - (27)
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(@+1- k) k) = prc Y (xrpk)+k(n+1) k) (28)
k(n+2) Y (x,r,pk )= (arkn+2) Y (x,r,pk)-prx” Y% (x,1,pik) 29)

B.  The recurrence relation for -« (x, r, p;Kk)
D,Z9 (x,r,p;Kk)= — kx*1Z) (x,r,p;k)  (29)
(D, )" 2§ (1 pik) = (k)" Za™ (., pik) - (30)

kp T {(L+a+kn)ir} . (31)
Tl o K )ir] 2 0er ik

(xDX —kn)Zn“) (x,r,p;k) =

((xDX +oc—rj+l) Z (x,r,p;K)= @+ o —r+kn) 2 (x,r,p;k) (32)

wz[“) (X 1, p;k)(33)

T {Leaskn-g)re ™

“1,-1y,1-1 d o1 =70 . +o-T—k (0~
o0, a2 (k= 0 2 i) g
where g=k/r.

(L+a-r+kn)Z (x,r,pk) - L+ a-r+kn) 2 (1, 3K )=

V. MAIN RESULTS

A. proofs from (20) to (31)
Rewrite equation (15) in the following form:
a-+kn r r
exp (-px') e | x.1,pik= LI L) e {‘p’n‘ﬁ(l“) } dt
2ni (001
differentiating both sides with respect to x, we get :

(Dx —prx"l)Yn" [x,r,p;k _ k(_pr).(r—l).[ {(ﬂt)"*”kn exp{—px’(1+t)'} D it

wog | (o)
Using (26) We get

(O, = pr M k) = (- pr Y 1, k)

which proves (19)
Now multiplying (19) both sides by p~*r~*x*" and after

simplification we get result (20)
result (21) and (22) are obvious iterations of (20).
e proof of (20)
Subtracting (23) both sides by Y (x,r,p;k)

and after some simplification we get:
o, 0 1] ¥ fonpi) =Y (orp
e proof of (21)
From equation (22) and (23), we get :
Y (x,r, k)= YO (x, 1, k)= Y& (x,r,p; k)
e proof of (22)
Rewrite equation (15), in the following form :
Mo . K ( )alkn eXp( pu Xu a+kn du
exp \-px" )Yy | x,r,pik=— o
p( P ) [ P Zmi { ((u+x) 1)
differentiating both sides with respect to ‘x’ and after
simplification we get :
(xD, +ou+kn—prx) Y
e proof of (23)
Rewrite equation (15), in the following form :
. k exp (f pu’ )(u X))
exp |- px X, r,p; k= 0 du
o)y, [ 27“! { (urx) -1)
differentiating both sides with respect to x and rearranging
terms, we get

(x,r,p;k) = k(n+1)Y (x,r,p;k)
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(D, + o+ 1=k —pnc’ )Y (x,1,p:k) = k(n+ DY (x,1,p;K)
which proves (26).

e proof of (24)
Eliminating the term xp v (x,r,p;k) between (21)
and (23) we get:
(a+1-K)Y (7, ik )~ prc Y (x,r, k) = k(n+0Y 9 (x,r, k)
on transposmon we get :
(a+1-K)Y (x,r,p;K) = prx Y (x,r, pi )=k (n + )Y (x, 1, p;K)

e proof of (25)
Eliminating the term xD, Y*) (x,r,p;k) between (21)
and (26), we get:
(+kn ) Y (k) -pr Y x r pek) =k (n+1) Y (x,r i)

e proof of (26)
Now putting u=sx in relation (19), we get:

niplrerHknlr 1 eoexp (pu)Ju* —x

differentiating both the sides Wlth respect to x and after
simplification we get:
nl p(l+a—r+kn)/r

I- rkx “j exp(pu’luk—xk]"'ldu

D [ X [ p k u(2+a—r+k(nfl))lr

T{L+a+kn)ir}

after some simplification we get

D, Z\” (x,1,p;k) = —kx**Z{4) (x,r, p;k)
e proof of (27)

From equation (31), we have

XD,z (x,r,p; k) —kz (x,r,p; k)
which on integration ‘n’ times further gives the recurrence
relation:

(xl’"Dk)m 79 (x,r,p; k) =(= k)" 2 (x,r, p:K)

e proof of (28)
Now putting u=sx in relation (18), we get :

pploarr exp (pu’ J(u/x) -1
pi)(kZE1 (er’k) J. p(p(Zl[(rJrkn)/)r]’du
T {{L+a+kn)ir} iy v
differentiating both the sides with respect to x and after
simplification we get
-1
D, - kx| {21, pK ) _m2l0(i7k71j exp(pu’l(u/x)k _lT du
T

u[2+u—r+k(n71])/r

n, (L+a-r+kn)/r

T{{L+a+kn)irf
or

(xDX - kn) 2 (x,r,p:k) =

C

-«
kT {{L+a+kn)ir} 2010
T {{L+a+k(n-1)/r)}
e proof of (29)
Differentiating (19), both the sides with respect to x we get :

(D, +a-r+1) 2 (x1,p;k) = MZ I(x,r,p;k)or

(b0, +0-r)+1) 2 x 1, pik)= L+ c-r-+kn) 267 (.1, k)
e proof of (30)

Eliminating the term xD  z(*) (x, r, p; k) from (30) and
(32), we obtain the following recurrence relation:
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DOI:10.35940/ijbsac.L0165.0321120

o T{La+Ha)ir]

fea-reka) 2 k- a-reia) 20 fur e fLraskp-1)ir}

2kl

e proofs of (31)
Rewrite the equation (10) in the following form :

n!p(lmfwkn)/rxafrﬂ (a) (X r’p-k):ﬁj exp (psrxr)pqsk [Sk _1]n ds
T

3%
T {L+a+kn)ir} ! ()
where k/r=q,
rp? ¢ explps'x" s -1 m ¢ exp(ps'x’ s —1f
o T oni) (5(271“]‘1 > 2mid %)[k(m]ds

differentiating both sides with respect to x, g times, we get :

o, o] e =i 2 g

VI. SPECIAL CASES

The following known special cases of (11) and (12) are
e spencer and fano polynomials
Taking, k=2, r=1, p=1; we get:
Z9(x) = 1 (x12,2) and 21 (x11,2)=
e konhauser polynomials
Taking, r= 1 p 1; we get:
79 (x,k)=y (xll k)and Z\(x,k)=Z" (x,11k)
o Iaguerre polynomials
Taking, k=1, r 1, p=1, we get:
L) (x) = ¢ )(x 111) Z (x,1,11)
e  bessel polynomials

Other than above (11) and (12) also give rise to
biorthogonal polynomials sets associated with Bessel
polynomials given below for k=-1 and r = -1, we get :

7! (1B -1)=[(-1)/ni] (B/n) v (x,cu+B—2n,p)

where yﬁ“) (X,OL,B) is generalized Bessel polynomials

defined by

7. (x=LB—1)=p"x “exp (B/n) D" [x“**" exp (~p/n)|
clearly the above polynomials satisfy the biorthogonal
property,

fe [E] 1 xasp-2npl, fasppoc- Pt

m-o+1 mn
0 m!p

7 (x)

VII. BILINEAR AND BILATERAL GENERATING

RELATIONS

In the section, we have derived some generating function for
Y (x,r,p,k)and Z* (x,r,p, k).

Now in this section we shall adopt group theoretic method
to obtain a new class of bilinear and bilateral generating
relations associated with

Ylg“) (X, r,p, k) and ZI(""“) (X, r,p, k) all the result
derived here appear in the form of some theorem. We prove
the following theorems with application.

Theorem-1

If there exists a generating relation of the form

Published By:
Lattice Science Publication

Exploring Innovation



International Journal of Basic Sciences and Applied Computing (IJBSAC)

G(x,w)= i a nly@ (x,r,p,k)w"
n=0 (35)

- {px’{l—(l—t)kﬂ - 6 [xa- ) o) @)

Proof: Consider the linear partial differential operator Q2 as
follows

Q=xy§+ky2§+(a+l—rpx')y
Such that
Q= [Y®(x,r,p,k)nty" =k(n+1)y" Y (x,r,p,K)|

@37)
Such that Hence, clearly €2 form a raising Lie-operator for
the class of function (*) (x,r,p;k). The multiplier

representation of this operator is given by

exp ((WQ)f (x,y)=exp [px {1 (L-kwy) ™ k}] )(1— Jlesthk
< [x (L kwy ), y(a- kwy) ]

Let us now consider the following generating relation;

G(x,w)= i a, nly' (x,r,p;k) w"

n=0 (38)
replacing w by wyz in (37), we get;

G (x,wyz) =3 a,niye) (x,r,p;K) (wyz)"
n=0 (39)
operating both side of (38) by exp (w€2), we get;
exp (WQ) G (x,wyz)=exp (W), i a,ny@ (x,r,p; k) wyz)"
n=0

(40)
now, using (37) the left hand member of (39) becomes.

exp [px” - @—kwy) " J] @— oy ) 2

G [X(l_kxy)_llkay(l_ kWy)_l] (41)
also using (34) the right hand member of (38) becomes
Z a,w™mz" 1/ m)Q™ [y (x,r,p,K)y"ni]

:i i k™a, @/ mi)n+mIw" 2"y [y (x,r,p, k)]
@
:Zo Zo a, . @/ mi) ni(kwy)" " [y (x,r, p, k)]

equating (41) and (42) and then putting kwy=t, zt/k=v,
we get the following relation;

explpx - (1- )" -0 Glxa- 1) ¥ - 1)
— nZ(; v (x,r,p;k) t" o, (V)

Where o, (V)= i mia,. [n ] v
n=0 m

This completes proof of the theorem.
Theorem-2
If there exists a bilinear generating relation of the form

G (x,u,w)= nZ:; a,w"(n!y? v® (u;s)

then there exists a generating relation of the form :

(43)
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A—tw)™" (1-sw) ™" exp [px {1 1- vvt)'“}+u fl—sw} ”5]
(44)

Glx(a—tw) ™", u L-sw) ™ wg (L-wt)* (1-ws) ]
= i i (wg)™ nt ) (w,g,%x) v® (uss)

n=0 j=0

Where(44)
£ (w,g;x) = mi%h) a, o (Wt)" si?g’

(p — 320G )
*(n+i-20) v, (6t)
Proof:

Consider the linear partial differential operator 2; follows
Q, =y, (xa/ax-+ky, 010y, +a+1-rpx'}i=12

Such that

(45)Q) [yn (x,1) n'y,] =k (n+1y™ v (x,1)
hence, clearly ¢», form a raising Lie-operator for the class

of function y(*) (x,r,p;k). The multiplier representation
of this operator is given by

exp (we2, JF (x,, )= @—tkowy, ) " (46)
o0 b b-ti-ton, ) et ) "o ]

assuming, that (46) exists, we substitute wy;y, g in the place
of w and operating both sides by exp

(WQ1 ) exp (WQ2 )
we get exp (le)exp (WQ )G (X U-\/\'ylng)
=exp (we, Jexp (we2,) Y 2, (wy,y,g)' ()7 (x,) v (uss)

n=0
now, using (36), the left hand member of (37) becomes

exp (we, ) [(1—swy2 )7([3*1)/5 exp [pur {l—(l—svvy2 )7”5}]]

Glu @—swy, )™y, @—swy.) "]
(1 twyl) (a+1)/t ( —svvy2 )—(B+l)/s

*exp [px' i-(—kwy, )" frpur f-—swy, )" |

G[X (1‘tWy1 )ﬂkau(l_swﬁ )71/S:Wy1yzg (1—tvvy1 )71(1_3\’\/3’2 )71]
also using (36), we see that the right member side of (37)

becomes,
t)y¥ (u,s)

(48)

a, (wy,y,g)" (N Qwy® (x;
j| j2

i 5 i a, W b’l xtnlwy1 HQ ( P (o, s)nly2)>

10 =0 j,0 Ji'k!

Mty 4N

ZOZZ A M( S yl}{s 9 )+ b+

R ;!

(u, t)(n+]1 —2j,)1s*

o0 o0 min{n jl) N+jy+jp nN=]2
S 70 J A SR
i )i n+J -i
n=0 j=0 j,-0 I —12)i! t

o &3
l""or |:>\.\0\‘lo N
www.ijbsac.org
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o -2j
* Y& ) (U S)nl yn+Jl JZYz (50)
Theorem-3
If there exists a generating relation of the form

G(x,w)= > a,z (x,r,p;k)w"
n=0 (51)
then there exists a generating relation of the form ;

[rw’l(—vt/wr)”’rler(—vt/wr)G X(rziv;;u\{t)”" X(VZW;W—V‘)UJ
=3 t e, (xV)

Wh:l’:(:

6, (V)= (/i) (- fLr o kmlir), Z6 (1, prk) v
Proof: "

Consider the linear partial differential operator A as
follows :

o 0
A=y X+y—r+1JSUChthat
(v

OX
A2 (xrp.k)y*] =@+ra-r+kn)Z® (xr,p.k) (52)

Hence, clearly A forms a raising Lie-operator for the class
of function z(*) (x,r,p,k). The multiplier representation
of this operator is given by
P\ r BT P\

exp (wA) f (x,y,):(rw+y )1 y f [{x(wr+y )‘ }/y,(wr+y )1 ]
(53)
Now consider the following generating relation;
G(x,w)= S

o> (54)
replacing w by wz and then multiplying both sides of (54)
by Y ; we get

X, WZ @ _ oy a, ff‘) x,r,p, wx )"
S( )y* =y > a, Z (<, r,p, K) ( )(55)

operating both sides of (55) by exp (w A), we get

a,z® (x,r,p, k) w"

exp (wA) [6(x,wz) y* ] = exp (wa) { ZanZ“ x,1,p,k) (wz)' }(55)

now, using (51), the left hand member of (54), becomes:

(rw+y')(1_r)/r Yo' G [{x(wr+y')“r}/ Y, (Wr+yr)ur]

(57)

also using (40), we see that the right hand member of (44)
becomes

w0 i a Wz AT [Z("‘)(x rp: k)y ]

m
-y i L @Wm)wsmz (1) (- L+ o kn i om 2™ (x,rpik) ye

(e, pik)

y“i "zn: a, ,(Lm)(Q-fL+a+k(n-m)irf), 2

n=0 m=0

*(—1/ zy )
equation (45) and (46), we get;

(rw +y' )(H)” yrG[{x(wr +y' )”r }/ Y, (Wr +y )”r]

-y (vvz)"mzn:;]an_m(llm'( _leask(n-mlir), 2 (k)

n=0
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*(rizy')' (59)

finally putting wz=t and —r/zy'=v in (59), we get
2,02 It 2,02 Ir

w Cveran T Cvrwee {X(f (fvvt}xty N WW‘rV‘T

=i o .(x,Vv)
n=0
where s (x v)= 3" (a, /mi) - {1+ o+ km}/r) 26 (x, 1, pik) v
m=0

This completes proof of the Theorem.

Theorem-4

Foow)=> a,7\ (xr,pik) w"

n=0 (60)
then there exists a generating relation of the form,
exp (ut)F[{(— ut/p)+ xl}llr,t]z i t" o, (x,u)
n=0
Where
o, (x,u)=>" a,@ i)y (x,r,p;k)u’
i=0 (61)
Proof:
Consider the linear partial differential operator ¢ as follow

Suchthat ¢ =y' (x_”lﬁlax — pl’) (62)
o= [yff‘)(x, rp;k)y* ] — pry @™ (x,r,p; k) y**the
multiplier representation of this operator is given by

exp (wo)f (x,y)=exp (— pry'w)f [(ry'w +x" )1” : y] 63)
let us now consider the following generating relation

F(x,w) = Z a, v\ (x,r,p;k) w"
(64)

replacing w by wz and then multiplying both side of (49) by
1", we get
v F(xowz)=v* > a, v (x,r,pik) (wz)®

n=0 (65)
operating both sides of (49) by exp (W¢) , We get:

exp (wd) [y“ F(x,wz)] = exp (Wo) {y‘* g a7\ (x,r,p;k) (Wz)”}

(66)
now using (47), we see that the left hand member of (50)
becomes

exp(—pry’w)y“ F[(ryrw+x’l”) vsz 67)
also using (46), the right hand member of (50) becomes,

33 a, W wize [ (xr,piky)y”]

n=0 j=0

a,, @ w2 (=2) (pr)! [ (x,r,pik) y*o]

|3

=0

Il
3M8
)

(68) a, ;[ J')( rpy’ /z) [y 0 (x,r,p; k) y"]}

El
Il
o

(69)
equating (51) and (52), we get:
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exp (— pry'w) y* F[(ry'w+x’)m,wz] (53)

©

n

>, (w) {Z a,, (/1) oy /2) [l (x,r,pik) y“]}

0

finally, putting wz = t and (— rpy’ /Z) =U in (53), we get

exp (ut)F [{(— ut/P)+ x’}m,t]z i t"o, (x,u)Where

Gn

(x,u)= Zn: a” @/ j) v (x,r,p,k)u’

j=0

This completes proof of the theorem

VIIL. CONCLUSION

As we can see, the results are different in many conditions
of generalization for one member of the pair of Konhauser
biorthogonal polynomials, generating relation and its really
get multiple representation of the such kind operators which
are discuss in the above results.
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