
International Journal of Basic Sciences and Applied Computing (IJBSAC)
ISSN: 2394-367X, Volume-2 Issue-1, September 2016

1

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Module Allocation for Maximizing Reliability of
Distributed Computing Systems using Dynamic

Greedy Heuristic
Surinder Kumar

 Abstract: This paper deals with the problem of module
allocation (i.e., to which processor should each task of an
application be assigned) in heterogeneous distributed computing
systems with the goal of maximizing the system reliability. The
module assignment problem for more than three processors is
known to be NP-hard, and therefore satisfactory suboptimal
solutions obtainable in an acceptable amount of time are
generally sought. We propose a new intelligent technique based
on dynamic module allocation which uses greedy search
algorithm for this problem. Performance of the algorithm
depends on number of modules, number of processors, and the
ratio of average communication time to average computation
time and module interaction density of application. The
effectiveness and efficiency of our algorithm is compared with
recently proposed module allocation algorithms for maximizing
system reliability available in literature.

 Keywords: Module assignment, Distributed computing,
Reliability, Dynamic Greedy heuristic, Module interaction graph.

I. INTRODUCTION

 Distributed computing (DC) systems have been widely

deployed for executing computationally intensive
applications with diverse computing requirements. A DC
system generally consists of a suite of geographically
distributed dissimilar processors interconnected via
communication networks. In such a system, a parallel
application can be decomposed into a number of
cooperating modules that are distributed to the various
processors for execution. In reality, however, the
performance of a parallel application running on a DC
system heavily depends on the mapping of modules
partitioned from the application onto the available
processors in the system, referred to as the module
assignment problem which, if not properly handled, can
nullify the benefits of DC systems. Module assignment can
be performed statically or dynamically [1]. Static module
assignments take place during compile time before running
the application and remain unchanged until the end of the
execution. In contrast, dynamic module assignments are
performed at runtime. Since static mapping does not incur
overheads on the execution time of the mapped application,
more complex mapping algorithms than the dynamic ones
can be adopted. When all information needed for the
assignment, such as the structure of the parallel application,
the execution costs of modules, the amount of data to be
transferred among modules,

Revised Version Manuscript Received on September 08, 2016.
 Surinder Kumar, Assistant Professor, Department of Mathematics,
Dayanand Anglo Vaidik College, Chandigarh (Punjab). India.

 The computing nodes and the communication network, is
known before the application execution, static mapping can
be exploited. In the general form of static mapping, a
parallel application is modelled using a module interaction
graph (MIG). In the MIG model, the vertices represent
application modules and the edges represent inter-module
communications. There are no precedence relations between
tasks. A module incurs an execution cost that may vary from
one processor to another, and two interacting modules that
are not assigned to the same processor incur a
communication cost. Certain resource constraints, such as
memory and processing load constraints, may be present at
each processor. The goal of the module assignment is to
minimize the sum of the total execution and communication
costs by appropriately allocating the modules to the
processors without violating any of the constraints.
 Due to its key importance on performance, the module
assignment problem has been extensively studied and
numerous methods have been reported in the literature.
These allocation schemes can be classified into two
categories. First, there are the exact methods that try to find
the optimal allocation for the given objective. The existing
approaches are developed using different strategies such as
graph theoretic techniques [2], integer programming [3], and
state space search [4, 5, 6]. However, as the problem is NP-
hard for more than three processors [4], these methods are
limited by the amount of time and memory needed to obtain
an optimal solution since they grow as exponential function
of the problem order.
 On the other hand, heuristic algorithms provide fast and
effective means for obtaining suboptimal solutions. These
techniques require less computation time than exact
methods. They are useful in applications where an optimal
solution is not obtainable within a critical time limit. They
are also applicable to large-size problems. Therefore,
development of effective heuristic procedures is gaining
importance among researchers. Different algorithms are
used for developing heuristic methods such as genetic
algorithm (GA) [7, 8], simulated annealing (SA) [9], hybrid
particle swarm optimization (HPSO) [10], harmony search
(HS) [11] and honey bee mating optimization (HBMO) [20].
 Because of the intractable nature of the module
assignment problem, new efficient techniques are always
desirable to obtain the best-possible solution within a
reasonable amount of computation time. The Dynamic
greedy (DG) heuristic is an effective stochastic local search
algorithm recently developed for combinatorial optimization
problems which has exhibited state-of-the-art performances
for several problems from computer science and
engineering, such as set covering problems [12, 13], flow
shop scheduling problems [14, 15], Sequencing single-

Module Allocation for Maximizing Reliability of Distributed Computing Systems using Dynamic Greedy Heuristic

2

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

machine tardiness problems [16], multi objective
optimization problem [17], just to name a few. Thus, we
intend to further extend the application of DG to the module
assignment problem in the distributed computing systems.
To the best of our knowledge, this study is the first to
pioneer the use of DG heuristic for the problem considered.
The remainder of this paper is organized as follows. After
formulating the problem in Section 2, the proposed DG
heuristic is elaborated in Section 3. Finally, some
concluding remarks are made in Section 4.

II. PROBLEM FORMULATION

 The general problem of optimally mapping independent
modules to machines in a DC suite has been shown to be
(weakly) NP-complete. To address this problem, a number
of heuristics have been proposed and can be categorized into
fast and slow algorithms according to the time it takes to
obtain the sub-optimal solution. Slow heuristics, such as by
ant optimization and by genetic algorithm, take a
significantly longer time than fast heuristics, however, they
aim to find better solutions.
In [18] eleven heuristics are compared and it is concluded
that the greedy heuristic min–min performs well in
comparison to the other techniques. Paper [19] reports that
the technique of ant optimization outperforms min-min and
genetic algorithm at the expense of a much longer mapping
process. However, only fast DG heuristics can be adopted in
the following situations, where the mapping process is
performed during the execution of the mapped modules.
There exists a large body of the literature covering many
module and heterogeneous computing models. In this paper,
we consider the module assignment problem with the
following characteristics.
 A distributed application is characterized by a task
interaction graph (MIG) G(V, E), where ‘V’ is a set of ‘N’
nodes indicating the ‘N’ modules of the application, and ‘E’
is a set of edges specifying the communication requirements
among these tasks. A weight cij associated with the edge

between modules ‘i’ and ‘j’ represents the amount of data to
be transferred between the two modules. The processors in
the system are heterogeneous. Hence, a module will incur
different execution costs if it is executed on different
processors. Let ‘K ’ be the number of processors in the DC
systems and EEC = {xik}N*K be the estimated execution cost
matrix where xik denotes the execution cost of module ‘i ’ on
processor ‘k’. On the other hand, all of the communication
channels are assumed to be non-uniform. That is, an
identical amount of data, if transmitted through different
communication channels, will incur different
communication costs. Define dki as distance-related
communication cost associated with one unit of data
transferred from processor ‘k’ to processor ‘l’ , such that if
modules ‘i’ and ‘j’ are executed on processors ‘k’ and ‘l’
respectively, then a communication cost of cikdkl is incurred.
The distance metric is symmetric, i.e., dkl= dlk. Furthermore,
we assume that no communication cost is incurred if two
interacting modules are assigned to the same processors.

 The allocation constraints depend on the characteristics
of both the application involved (resource requirements by
the modules) and on the available resource capacities of the
processors in the system. To describe the allocation
constraints, let r i denote the resource requirement of module
‘i’ and let Rp denote the available resource capacity of
processor ‘p’.
 A particular module assignment can be represented by
an integer vector ‘ψ’ of size ‘N’ which is a mapping from
the set of modules to the set of processors. It contains the
indices of the processors to which each module is allocated,
i.e. [i] =k , if module ‘i’ is allocated to processor ‘k’. Let Ω
be the set of all mappings from the set of modules to the set
of processors. Our objective is to minimize the total
execution and communication costs incurred by the module
assignment subject to the resource constraint. Hence, the
considered module assignment problem can be formulated
as

)2(.,..,3,2,1)(

)1()()()(

1

1 11
)(

KkRrithatSuch

allfordCXCostMinimize

ki

ji

N

i

N

ij
ij

N

i
ii

=∀≤

Ω∈+=

∑

∑∑∑
−

= +==

ψ

ψψ ψψψ

 In the above formulation, objective function (1) consists of
two parts. The first is the sum of the execution costs and the
second the sum of the communication costs incurred
between interacting modules residing on different
processors. Constraint (2) ensures that the total resource
requirements of the modules assigned to each processor
must not exceed its resource availability.

III. DYNAMIC GREEDY HEURISTIC

 The Dynamic Greedy (DG) algorithm is nothing but a
simple greedy algorithm applied on dynamic distributed
computing systems. In this approach, we are using a simple
greedy search algorithm or greedy heuristic to obtain the
next appropriate processor so that it maximizes the system
reliability.

International Journal of Basic Sciences and Applied Computing (IJBSAC)
ISSN: 2394-367X, Volume-2 Issue-1, September 2016

3

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

 System reliability can be maximized by decreasing
communication time in the whole process of module
allocation as to minimize the ratio of communication time to
computation time. As the communication time of local
machine is nearly zero, so we will select the local worker for
module allocation first or we will give higher priority to the
local processor than remote processor. We will also see that
the processor that we are using for allocation is free or not.
If the processor is free or ideal then a module can be
allocated to that processor. (In initial step to algorithm we
should have all modules in module queue).

A. Greedy Algorithm

1. n := length[s]
2. A : = {a1}
3. J : = 1
4. For k:= 2 to n do
5. If sk>= fj // compatible activity
6. then A := A union {ak}
7. j:= k
8. Return A

IV. OBJECTIVES

• To learn the Greedy algorithmic paradigm
• To apply Greedy methods to solve several optimization

problem
• To analyse the correctness of greedy algorithms

V. CONCLUSION

 To the best of our knowledge, this is the first report on
the application of dynamic greedy heuristic to the module
assignment problem in distributed computing systems. We
used the simple greedy heuristic algorithm to minimize the

total time required to execute the application. Furthermore,
the DG has the advantages that it has fewer parameters that
need to be tuned than the competing algorithms, and it is a
rather simple, easily implementable algorithm compared to
HPSO algorithm and HBMO algorithm. We are currently
extending the application of the proposed DG algorithm to
another version of the module assignment problem where
each processor and each communication link has a failure
ratio and the goal is to maximize the system reliability for
accomplishing the module execution.

ACKNOWLEDGMENT

 We take this opportunity to express our deepest gratitude
and appreciation to all those who have helped us directly or
indirectly towards the successful completion of this paper.

REFERENCES

1. S Casavant, T., Kuhl, J.G.,1988. “A taxonomyof scheduling in
general-purpose distributed computing systems”. IEEE Transaction
on Software Engineering 14 (2), 141–154.

2. Stone, H.S., 1977. “Multiprocessor scheduling with the aid of
network flow algorithms”. IEEE Transactions on Software
Engineering SE 3 (1), 85–93.

3. Ernst, A., Jiang, H., Krishnamoorthy, M., 2006. “Exact solutions to
module allocation problems”. Management Science 52, 1634–1646.

4. Chern, M.S., Chen, G.H., Liu, P., 1989. “An LC branch-and-bound
algorithm for module assignment problem”. Information Processing
Letters 32,61–71.

5. Sinclair, J.B., 1987. “Efficient computation of optimal assignments
for distributed modules”. Journal of Parallel and Distributed
Computing 4, 342–361.

6. Tom, A.P., Murthy, C.S.R., 1999. “Optimal module allocation in
distributed systems by graph matching and state space search”.
Journal of Systems and Software 46 (1), 59–75.

7. Chockalingam, T., Arun kumar, S., 1995. “Genetic algorithm based
heuristics for the mapping problem”. Computer and Operations
Research 22, 55–64.

8. Hadj-Alouane, A.B.,Bean, J.C., Murty, K.G., 1999. “A hybrid
genetic/optimization algorithm for a module allocation problem”.
Journal of Scheduling 2,189–201.

9. Hamam, Y., Hindi, K.S., 2000. “Assignment of program modules to
processors: a simulated annealing approach”. European Journal of
Operational Research 122, 509–513.

10. Yin, P.Y., Yu,S.S., Wang, P.P., Wang, Y.T., 2006. “A hybrid particle
swarm optimization algorithm for optimal module assignment in
distributed systems”. Computer Standard and Interface 28, 441–450.

11. Zou, D.X., Gao, L.Q., Li, S., Wu, J.H., Wang, X., 2010. “A novel
global harmony search algorithm for module assignment problem”.
Journal of Systems and Software 83 (10), 1678–1688.

12. Jacobs, L.W., Briscoe, M.J., 1995. A local-search heuristic for large
set-covering problems”. Naval Research Logistics Quarterly 42,
1129–1140.

13. Marcher, E., Steinbeck, A., 2000.“An evolutionary algorithm for large
scale set covering problems with application to airline crew
scheduling”. Lecture Notes in Computer Science 1803, 367–381.

14. Pan, Q.K., Wang, L., Zhao, B.H., 2008. “An improved iterated greedy
algorithm for the no-wait flow shop scheduling problem with make
span criterion”. International Journal of Advanced Manufacturing
Technology 38, 778–786.

15. Ruiz, R., Stützle, T., 2007. “A simple and effective iterated greedy
algorithm for the permutation flow shop scheduling problem”.
European Journal of Operational Research 177 (3), 2033–2049.

16. Ying, K.C., Lin, S.W., Huang, C.Y., 2009. “Sequencing single-
machine tardiness problems with sequence dependent setup times
using an iterated greedy heuristic”. Expert Systems with Applications
36, 7087–7092.

17. Dubois-Lactose, J., López-Ibá ̃nez, M., Stutz, T. “A hybrid TP + PLS
algorithm for bi-objective flow-shop scheduling problems”.
Computers and Operations Research, in press.

18. T.D. Braun, D. Hansen, R.F. Freund, H.J. Siegel, N. Beck, L.L.
Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys,
B. Yao, “A comparison of eleven static heuristics for mapping a class
of independent modules onto heterogeneous distributed computing
systems”, Journal Parallel and Distributed Compute. 61 (6) (2001)

Module Allocation for Maximizing Reliability of Distributed Computing Systems using Dynamic Greedy Heuristic

4

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

81–837.
19. G. Ritchie, J. Levine, “A hybrid ant algorithm for scheduling

independent jobs in heterogeneous computing environments”, in:
Proceedings of the 23rd Workshop of the UK Planning and
Scheduling Special Interest Group, 2004.

20. Qin-Ma Kang, Hong He, Hui-Min Song, Rong Deng. “Module
allocation for maximizing reliability of distributed computing systems
using honeybee mating optimization”. Original Research Article
Journal of Systems and Software, Volume 83, Issue 11, November
2010, Pages 2165-2174.

