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Element Methods for Solving the Typical Ordinary 

Differential Equations 

S. C. Shiralashetti, P. B. Mutalik Desai, A. B. Deshi  

Abstract - In this paper, we developed an efficient Haar Wavelet 
Collocation Method (HWCM) for solving typical Ordinary 
Differential Equations (ODE). In particular, it is shown that the 
computed results of HWCM are superior to Finite Element 
Method (FEM) as compared with the exact solution.  The present 
study is illustrated by exploring different kinds of Typical 
Ordinary Differential Equations that shows the pertinent features 
of the Haar wavelet collocation method. 
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I. INTRODUCTION 

The numerical solution of ordinary differential equations is 
one of the older, more established branches of numerical 
analysis. Yet, despite an abundance of methods to treat 
differential equations when the boundary conditions are 
known, at the present time, there does not exist a single 
numerical method for producing the general solution of a 
differential equation directly. As a result, there is a prevalent 
feeling among many scientists and engineers that while 
numerical methods provide useful information in specific 
cases, they are inferior to analytic methods which describe 
the behaviour of a system under arbitrary conditions. The 
Finite Element Method (FEM) means going from part to 
whole is an effective tool for numerical solutions to a large 
class of engineering problems. Many Researchers have 
contributed to the development of FEM [1-6] since its 
origin. Due to its diversity and flexibility, as an analysis tool 
FEM has attracted engineering and science education 
considerably. FEM will give approximate numerical 
solutions for complex industrial problems, where exact 
solutions are difficult to obtain. Some of the complex 
problems are cooling of electronic equipment, metal 
temperatures in the case of gas turbine blades, cooling 
problems in electrical mortars etc. The name Wavelet or 
Ondelette was introduced in the end of 1980 by French 
mathematicians. The existence of Wavelets and many ideas 
originated from work in sub band coding in engineering, 
coherent states and renormalization group theory in physics 
and the study of Calderon-Zgymund operators in 
mathematics.  
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The Haar Wavelets have gained popularity among 
researchers for their useful properties such as simple 
applicability, orthogonality and compact support. Due to the 
linear and piecewise nature, the Haar Wavelet basis lakhs 
differentiability and hence the integration approach will be 
used instead of the differentiation for calculation of the 
Coefficients [7-10]. The main concern of this paper is to 
introduce a Haar wavelet collocation and finite element 
methods for the solution of differential equations in which 
the dimension of the nullspace of a matrix representation of 
an ordinary differential operator is the same as the 
dimension of the nullspace of the operator itself. With these 
methods, the number of homogeneous solutions of the 
system of algebraic equations is equal to the number of 
homogeneous solutions of the original differential equation. 
Consequently, by evaluating the homogeneous solutions of 
the approximate system, and by also determining the 
particular integral, it is possible to obtain for the first time 
by the direct application of a numerical method, the 
approximate general solution of an ordinary differential 
equation. The objective of the study is to compare FEM 
&HWCM for solving the typical ODEs from the point of 
view of the formulation of the methods, describing the 
motivations that lead to them. Both of these methods have 
the ODE with variable coefficient as starting problem, 
where as the others are related with singular valued 
homogeneous, non homogeneous and nonlinear problems.      
The present work is organized as follows; Finite element 
method of solutions is presented in section 2. In section 3, 
Haar wavelets and Operational matrix of integration is 
discussed. Section 4 deals with the numerical findings with 
error analysis of test problems. Finally, conclusion of the 
proposed work is presented in section 5. 

II. FINITE ELEMENT METHOD OF 
SOLUTIONS  

Consider the differential equation to find the ( )tu  

   
,0=−+
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Subjected to the boundary conditions 

( ) 00 ,0 Q
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Where ( ) ( ) ( )xfftcctaa === ,,    here 0u and 

0Q  are given quantities of the problem. 

We Seek an approximate solution to equation (2.1) over 

each finite element eΩ is associated in the form  
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Where 
e
ju  are the values of the solution, ( )tu  at the nodes 

of the finite element eΩ and 
e
jψ  are the approximation 

functions over the element.   
The ith algebraic equation of the system of n equations can 
be written as [4]  
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In Matrix notation the linear algebraic equations (2.4) can be 
written as   

[ ]{ } { } { }eeee QfuK +=  Or eeee QfuK +=                                                                          
(2.6) 

Here the matrix  eK  is called the coefficient matrix or 

stiffness matrix. The column vector ef is the source vector. 

eu & 
eQ called the primary and secondary variables. 

The coefficient matrix and Column Vector are  
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Imposing the Boundary conditions (2.2) on the given system 

of equations with 0=e
if

, 
we get
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This Evolves four equations in four unknowns, 3U  1
1Q ,

2
1Q and 3

2Q . 

 

 

III. HAAR WAVELETS AND OPERATIONAL 
MATRIX OF INTEGRATION 

The scaling function )(1 th  for the family of the Haar 

wavelets is defined as 

     

[ )
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=
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tfor
th

0

1,01
)(1                                                

(3.1) 

The Haar wavelet family for [ )1,0∈t  is defined as 

                                            

0.5
1 ,
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( ) 1 ,
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(3.2) 

In the above definition the integer 2lm = , 0,1,..., ,l J=  

indicates the level of resolution of the wavelet and integer 

0,1,..., 1k m= −  is the translation parameter.  

Maximum level of resolution isJ . The index i  in Eq. (3.2) 

is calculated using 1i m k= + + . In case of minimal values 

1, 0m k= =  then 2i = . The maximal value of i is

12JN += . 

Let us define the collocation points

Nj
N

j
t j ,...,2,1,

5.0 =−= , discretize the Haar function

( )ih t , in this way, we get Haar coefficient matrix,

( ) )(, ji thjiH =  which has the dimensionN N× . For 

instance, 3 16J N= ⇒ = , then we have 
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( )

1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1

1      1      1      1      1      1      1      1     - 1     - 1     - 1     - 1     - 1     - 1     - 1     - 1

1      1     

H 1 6 , 1 6 =

 1      1     - 1     - 1     - 1     - 1      0      0      0      0      0      0      0      0

0      0      0      0      0      0      0      0      1      1      1      1     - 1     - 1     - 1     - 1

1      1     - 1     - 1      0      0      0      0      0      0      0      0      0      0      0      0

0      0      0      0      1      1     - 1     - 1      0      0      0      0      0      0      0      0

0      0      0      0      0      0      0      0      1      1     - 1     - 1      0      0      0      0

0      0      0      0      0      0      0      0      0      0      0      0      1      1     - 1     - 1

1     - 1      0      0      0      0      0      0      0      0      0      0      0      0      0      0

0      0      1     - 1      0      0      0      0      0      0      0      0      0      0      0      0

0      0      0      0      1     - 1      0      0      0      0      0      0      0      0      0      0

0      0      0      0      0      0      1     - 1      0      0      0      0      0      0      0      0

0      0      0      0      0      0      0      0      1     - 1      0      0      0      0      0      0

0      0      0      0      0      0      0      0      0      0      1     - 1      0      0      0      0

0      0      0      0      0      0      0      0      0      0      0      0      1     - 1      0      0

0      0      0      0      0      0      0      0      0      0      0      0      0      0      1     - 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

We establish an operational matrix for integration via Haar wavelets. The operational matrix of integration is obtained by 

integrating (2.2) is as, 

                                                                   0

( )
t

i iPh h t dt= ∫                                                    (3.3) 

and                                                           
0

( )
t

i iQh Ph t dt= ∫                                                    (3.4) 

These integrals can be evaluated by using equation (2.2) and they are given by  
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For instance, 3 16J N= ⇒ = , from (3.5) then we have  

 1      3      5      7      9     1 1     1 3     1 5     1 7     1 9     2 1     2 3     2 5     2 7    2 9     3 1

 1      3      5      7      9     1 1     1 3     1 5     1 5     1 3     1 1      9      7      5    

1

  3      1

 1  

( 1 6 , 1 6 )
3 2

P h =

    3      5      7      7      5      3      1      0      0      0      0      0      0      0      0

 0      0      0      0      0      0      0      0      1      3      5      7      7      5     3      1

 1      3      3      1      0      0      0      0      0      0      0      0      0      0      0      0

 0      0      0      0      1      3      3      1      0      0      0      0      0      0     0      0

 0      0      0      0      0      0      0      0      1      3      3      1      0      0      0      0

 0      0      0      0      0      0      0      0      0      0      0      0      1      3     3      1

 1      1      0      0      0      0      0      0      0      0      0      0      0      0      0      0

 0      0      1      1      0      0      0      0      0      0      0      0      0      0     0      0

 0      0      0      0      1      1      0      0      0      0      0      0      0      0      0      0

 0      0      0      0      0      0      1      1      0      0      0      0      0      0     0      0

 0      0      0      0      0      0      0      0      1      1      0      0      0      0      0      0

 0      0      0      0      0      0      0      0     0      0      1      1      0      0      0      0

 0      0      0      0      0      0      0      0      0      0      0      0      1      1     0      0

 0      0      0      0      0      0      0      0      0      0      0      0      0      0      1      1
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and from (3.6) we get 

 1      9     2 5     4 9     8 1    1 2 1    1 6 9    2 2 5    2 8 9    3 6 1    4 4 1    5 2 9    6 2 5    7 2 9   8 4 1    9 6 1

 1      9     2 5     4 9     8 1    1 2 1    1 6 9    2 2 5    2 8 7    3 4 3    3 9 1    4 3 1    4 6 3    4 8

1

7    5 0 3    5 1 1

 

(1 6 ,1 6 )
2 0 4 8

Q h =

1      9     2 5     4 9     7 9    1 0 3    1 1 9    1 2 7    1 2 8    1 2 8    1 2 8    1 2 8    1 2 8    1 2 8    1 2 8    1 2 8

 0      0      0      0      0      0      0      0      1      9     2 5     4 9     7 9    1 0 3   1 1 9    1 2 7

 1      9     2 3     3 1     3 2     3 2     3 2     3 2     3 2     3 2     3 2     3 2     3 2     3 2     3 2     3 2

 0      0      0      0      1      9     2 3     3 1     3 2     3 2     3 2     3 2     3 2     3 2    3 2     3 2

 0      0      0      0      0      0      0      0      1      9     2 3     3 1     32     3 2     3 2     3 2

 0      0      0      0      0      0      0      0      0      0      0      0      1      9    2 3     3 1

 1      7      8      8      8      8      8      8      8      8      8      8      8      8      8      8

 0      0      1      7      8      8      8      8      8      8      8      8      8      8     8      8

 0      0      0      0      1      7      8      8      8      8      8      8      8      8      8      8

 0      0      0      0      0      0      1      7      8      8      8      8      8      8     8      8

 0      0      0      0      0      0      0      0      1      7      8      8      8      8      8       8

 0      0      0      0      0      0      0      0      0      0     1     7      8      8      8      8

 0      0      0      0      0      0      0      0      0      0      0      0      1      7     8      8

 0      0      0      0      0      0      0      0      0      0      0      0      0      0      1     7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IV. TEST PROBLEMS  

 Problem 1. Now, consider homogeneous differential equation with variable coefficient 

                                                       ( )24 2 1 0u tu t u′′ ′+ + + =                                                (4.1)           

with the condition  1)1(,0)0( == uu                                                                                    (4.2)   

Case-1: FEM Solution: Comparing (4.1) with (2.1), we have 1p = − , 4q t= , ( )22 1r t= +  and 0s = , then from (2.7), 

then the coefficient matrix is  

                             24 2(1 )
b b b

a a a

t t ti j j
i j i i jt t t

dL dL dL
K K t dt tL dt t L L dt

dt dt dt
= = + + +∫ ∫ ∫

 

For two linear elements i.e., 1&2i j = , then 1 2( ) 1 & ( )
t t

L t L t
h h

= − =   , where h=1/M then we get 









+









−
+









−
−−=

123

32

3011

10

11

111 3h
h

h
K

,

 if M=4, by the problem and conditions (4.2) and by assembling the 

matrix elements we get the matrix,  after omitting first row, first column and last row, last column is 

                             

23

3

4

2 1 0 14 3 0 2 1 0 0
1

1 2 1 3 14 3 1 2 1 0
30

0 1 2 0 3 14 0 1 2 4.2515

u
h

h u
h

u

 −          
         − + + − − =         

         − − −          

 

then we get 2 0.4231u =  7457.03 =u & 9408.04 =u . 

Case-2: HWCM Solution: 

Let us assume that                                     
1

''( ) ( )
N

i i
i

u t ch t
=

=∑  
                                                     (4.3)     

  By integrating (4. 3) we have 
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1

'( ) '(0) ( )
N

i i
i

u t u c Ph t
=

= +∑                                      (4.4)                          Again 

integrating (4.4) 
1

( ) (0) '(0) ( )
N

i i
i

u t u u t cQh t
=

= + +∑
 

Put 1t = , we get 
1

'(0) 1 ( )
N

i i
i

u cCh t
=

= −∑  then 
 
 

                                                       
1 1

'( ) 1 ( ) ( )
N N

i i i i
i i

u t cCh t cPh t
= =

= − +∑ ∑                                             (4.5)                  

and
    

                                       
1 1

( ) 1 ( ) ( )
N N

i i i i
i i

u t cCh t t cQh t
= =

 = − + 
 
∑ ∑                                                (4.6)  

where ( )
0

1

i iCh Ph dtt= ∫  and for instance 3 16J N= ⇒ = , then we have 

128   128   128   128   128   128   128   128   128   128   128   128   128   128   128   128

128   128   128   128   128   128   128   128    64     64     64     64     64 

1

    64     64

(16,16)
256

Ch =

     64

128   128   128   128   -16   -16    -16    -16    16     16     16     16     16     16     16     16

  0       0       0       0       0       0       0       0     32     32     32     32     16     16     16     16

128   128   -68    -68      4       4       4       4      4       4       4       4       4       4       4       4

  0       0       0       0      72     72    -28    -28     4       4       4       4       4       4       4       4

  0       0       0       0       0       0       0       0     32     32     -4      -4       4       4       4       4

  0       0       0       0       0       0       0       0      0       0       0       0       8       8       4       4

128   -97      1       1       1       1       1       1      1       1       1       1       1       1       1       1

  0       0      98    -71      1       1       1       1      1       1       1       1       1       1       1       1

  0       0       0       0      72    -49      1       1      1       1       1       1       1       1       1       1

  0       0       0       0       0       0      50     -31    1       1       1       1       1       1       1       1

  0       0       0       0       0       0       0       0     32    -17      1       1       1       1       1       1

  0       0       0       0       0       0       0       0      0       0      18      -7      1       1       1       1

  0       0       0       0       0       0       0       0      0       0       0       0       8      -1       1       1

  0       0       0       0       0       0       0       0      0       0       0       0       0       0       2       1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Substituting (4.4), (4.4) and (4.6) in (4.1), we get   

2

1 1 1 1 1

( ) 4 1 ( ) ( ) 2(1 ) 1 ( ) ( ) 0
N N N N N

i i i i i i i i i i
i i i i i

ch t t cCh t c Ph t t cCh t t cQh t
= = = = =

    + − + + + − + =    
    

∑ ∑ ∑ ∑ ∑        (4.7)  

Solving (4.7) using Inexact Newton’s method, we get the Haar wavelet coefficientsic ’s =  

[-3.02, 0.35, 1.50, -0.97, 0.70, 0.57, -0.39, -0.50, 0.27, 0.42, 0.41, 0.14, -0.13, -0.25, -0.26,  

-0.23] and the corresponding HWCM of the solution of (4.7) is obtained using the method presented in section 3 and is 

presented with FEM solution in the Table 1 for N=16 and Fig. 1 for N=32 in comparison with FEM and Exact solution 

2( ) exp( 1)u t t t= − + . The error analysis for higher values of N is given in Table 2. 
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Test Problem 2. Consider the homogeneous singular value 

problem, 

                                   

22
'' ' (4 6) 0, 0 1u u t u t

t
+ − + = < ≤                                                       

4.8) 

Subjected to   (0) 1, (0) 0u u′= =                                                                                          

(4.9)  

Using the Procedure explained in section 2 & 3, we obtained 
the FEM and HWC methods solution and is compared with 

the exact solution )exp()( 2txy =   is presented in fig 2 and 

the solution for N=32 is presented in Table 3 and Its Error 
analysis is given in Table 4. FEM is not comparable with 
exact solution but HWC method gives comparable solution.  

  
Test Problem 3. Now, consider the non homogeneous 
singular value problem

                                                        

2 32
( ) ( ) ( ) 6 12u t u t u t t t t

t
′′ ′+ + = + + +                           

(4.10) 

subject to conditions   ( )(0) 1, 1 5u u′= =                                                                      

(4.11)   

Using the Procedure explained in section 2 & 3, we obtained 

the FEM and HWC methods solution and is compared with 

the exact solution 32)( ttxy +=   is presented in fig 3. Its 

solution for N=32  is presented in Table 5  and Its Error 

analysis is given in Table 6. FEM is not comparable with 

exact solution but HWC method gives comparable solution.  
 Test Problem 4. Lastly, consider the Non linear equation, 

                                                           

52
'' 0, 0 1u u u t

t
′+ + = < ≤                                        

(4.12) 

Case-1: FEM Solution: Comparing (4.25) with (3.1.1), we 

have, tp = , 2−=q , 
4r tu= −  and 0=s , then from 

(3.1.5), then the coefficient matrix is  

                           
4

1 1 2 2

0

2 ( ) ( )
h

i j j
ij i i j

dL dL dL
K K t L t u L u L L L dt

dt dt dt

 
= = − − + 

 
∫  

For two linear elements i.e. , 1&2i j = , then 1 2( ) 1 & ( )
t t

L t L t
h h

= − =   , where h=1/M then we get 

if M=4, assembling the K matrix elements we get, 

 

                                   
2

3 3 0 0 0 70 70 0 0 0

1 2 3 0 0 70 280 70 0 0
1

0 1 2 3 0 0 70 280 70 0
2 840

0 0 1 2 3 0 0 70 280 70

0 0 0 1 1 0 0 0 70 210

h

−   
   −   
   −−
   −   
   −     

 

By the problem and conditions (4.14), 0if = , 
  

[ ]TQ 5925.0,0,0,0,0 −=
 
and omitting the first row and 

first column, then we get, we obtained the solution as 

2 -59.6677u = , 3 -38.4862u = 4 - 44.6500u =

5 -41.6969u =  

Case-2: HWCM Solution: 

Let us assume that                                   

)()(
1

thatu i

N

i
i∑

=

=′′                (4.13)                                By 

integrating (4.26) twice, we have 

                                                                
1

( ) ( )
N

i i
i

u t a Ph t
=

′ =∑                                                 

(4.14)
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1

( ) 1 ( )
N

i i
i

u t a Qh t
=

= +∑                                               

(4.15) 

Substituting (4.13)-(4.28) in (4.12), we get  

                                                  

5

1 1 1

2
( ) 1 0

N N N

i i i i i i
i i i

a h t a Ph a Qh
t= = =

  + + + =  
  

∑ ∑ ∑
          

                

(4.16)  

Solving (4.29) using Inexact Newton’s method, we get the 

Haar coefficients ic ’s = [ -0.22,    

-0.08, -0.03, -0.04, -0.01, -0.02, -0.02, -0.02, -0.00, -0.01, -
0.01, -0.01, -0.01, -0.01, -0.01 &    -0.01]. The obtained the 
numerical solution HWCM and FEM of (4.12) is presented 

in comparison with the exact solution 2/1
2

)
3

1()( −+= t
tu  

in the Table 7 for N=16 and Fig. 4 for N=32. The error 
analysis for higher values of N is given in Table 8.  

V. CONCLUSION 

This paper presents a generalized procedure for FEM & 
HWCM for the solutions of some of ODEs were analyzed 
and their characterises in terms of accuracy were examined. 
During the course of investigation, several new phenomena 
were explored. 1. Typical ODE with variable coefficient 
problems reveals that both FEM exhibits the non 

comparable with exact solution. But HWCM gives the 
accurate solution as compared to exact. 2. As far as the 
singular valued ODEs are concerned, FEM is not 
comparable with exact solution but HWC method gives 
comparable solution with true solution. 3. In case of non-
linear ODE, HWCM gives excellent solutions than FEM as 
compared with exact solutions, which is justified.   
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Table1. Comparison of FEM and HWCM with Exact solutions for N=16 of the Test Problem 1. 

)32/1(=t  
FEM 
(F) 

Exact 
(E) 

HWCM 
(H) 

Absolute Errors
 

FE −  HE −  

1 0.0461 0.0848 0.0343 0.0387 0.0504 

3 0.1377 0.2526 0.1241 0.0772 0.1284 

5 0.2278 0.4144 0.2458 0.1149 0.1686 

7 0.3158 0.5668 0.3977 0.1515 0.1690 

9 0.4010 0.7063 0.5683 0.1866 0.1380 

11 0.4828 0.8302 0.7370 0.2199 0.0932 

13 0.5605 0.9362 0.8827 0.2510 0.0535 

15 0.6335 1.0228 0.9921 0.2795 0.0306 

17 0.7012 1.0889 1.0634 0.3053 0.0255 

19 0.7633 1.1344 1.1023 0.3280 0.0321 

21 0.8191 1.1596 1.1172 0.3474 0.0424 

23 0.8684 1.1655 1.1156 0.3634 0.0499 

25 0.9107 1.1534 1.1025 0.3758 0.0509 

27 0.9457 1.1254 1.0812 0.3844 0.0442 

29 0.9732 1.0835 1.0531 0.3893 0.0304 

31 0.9930 1.0302 1.0191 0.3904        0.0110 
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Table 2. Error analysis of the Test Problem 1. 

N L∞ (FEM) MRE(FEM) RPD(FEM) L∞ (HWCM) MRE(HWCM) RPD(HWCM) 

16 0.3904 4.6010 8.0101 0.1690 1.9922 0.3210 
32 0.3956 9.3177 8.1550 0.1728 4.0702 0.3210 

64 0.3983 18.7588 8.2276 0.1737 8.1832 0.3210 
128 
256 

0.3996 
0.4002 

37.6375 
75.3957 

8.2639 
8.2820 

0.1740 
0.1740 

16.3873 
32.7844 

0.3210 
0.3210 

 
Fig. 1. Comparison of FEM & HWCM solution with exact solution for N=32 of Test Problem 1. 

Table 3. Comparison of FEM and HWCM with Exact solutions for N=16 of the Test Problem 2. 

)32/1(=t  FEM (F) 
1.0e+03 * 

Exact 
(E) 

HWCM 
(H) 

Absolute Errors
 

FE −
 

1.0e+03 * 

HE −
 

1.0e-03 * 
1 5.6691 1.0010 1.0010 5.6681 0.0011 
3 4.4235 1.0088 1.0088 4.4225 0.0014 
5 4.2962 1.0247 1.0247 4.2952 0.0063 
7 4.2933 1.0490 1.0490 4.2922 0.0137 
9 4.3041 1.0823 1.0823 4.3031 0.0233 
11 4.3166 1.1254 1.1254 4.3155 0.0350 
13 4.3292 1.1794 1.1794 4.3280 0.0485 
15 4.3419 1.2457 1.2457 4.3407 0.0634 
17 4.3547 1.3261 1.3260 4.3533 0.0790 
19 4.3674 1.4227 1.4226 4.3660 0.0942 
21 4.3802 1.5383 1.5382 4.3787 0.1075 
23 4.3931 1.6763 1.6762 4.3914 0.1167 
25 4.4060 1.8411 1.8410 4.4041 0.1186 
27 4.4189 2.0379 2.0378 4.4169 0.1083 
29 4.4319 2.2734 2.2733 4.4296 0.0789 
31 4.4449 2.5561 2.5561 4.4423 0.0206 

 

 

 

 

 

 

 

 
 

Fig. 2. Comparison of FEM & HWCM solutions with exact solution for N=32 of Test Problem 2 
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Table 2. Error analysis of the Test Problem 2. 

N 
FEM HWCM 

∞L  mreL  rpdL  ∞L  mreL  rpdL  
8 1.3534e+03 1.3481e+03 3.0328e+07 3.7226e-04 3.7081e-04 1.5843e-06 
16 5.6681e+03 5.6625e+03 5.2565e+08 1.1858e-04 1.1846e-04 1.8227e-07 
32 2.3204e+04 2.3199e+04 8.7575e+09 3.1412e-05 3.1404e-05 1.3156e-08 
64 9.3906e+04 9.3900e+04 1.4300e+11 7.9072e-06 7.9067e-06 8.3507e-10 
128 3.7782e+05 3.7782e+05 2.3114e+12 1.9978e-06 1.9977e-06 5.3740e-11 
256 1.5157e+06 1.5157e+06 3.7172e+13 4.9990e-07 4.9990e-07 3.3662e-12 

Table 5. Comparison of FEM and HWCM with Exact solutions for N=16 of the Test Problem 3. 

)32/1(=t  
FEM 

(F)1.0e+04 * 
 

Exact 
(E) 

HWCM 
(H) 

Absolute Errors 

FE −
 

1.0e+04 * 

HE −
 

1.0e-03 * 
1 -3.301119 0.001007 0.001037 3.301119 0.030512 

3 -2.566184 0.009613 0.009558 2.199910 0.054951 

5 -2.483446 0.028228 0.028095 2.566185 0.133286 

7 -2.473179 0.058319 0.058119 2.443285 0.199695 
9 -2.470965 0.101348 0.101085 2.483449 0.262939 

11 -2.469647 0.158782 0.158458 2.469257 0.324493 

13 -2.468428 0.2320861 0.231701 2.473185 0.384798 
15 -2.467222 0.322723 0.322279 2.471073 0.443985 

17 -2.466017 0.432159 0.431657 2.470975 0.502071 

19 -2.464812 0.561859 0.561300 2.470207 0.559018 
21 -2.463609 0.713287 0.712672 2.470975 0.614765 

23 -2.462406 0.887908 0.887239 2.470207 0.669237 

25 -2.461203 1.087188 1.086466 2.469663 0.722352 
27 -2.460001 1.312591 1.311817 2.469044 0.774025 

29 -2.458800 1.565582 1.564758 2.468451 0.824176 

31 -2.457600 1.847625 1.846753 2.457199 0.872718 

Table 6. Error analysis of the Test Problem3. 

N L∞ (FEM) MRE(FEM) RPD(FEM) L∞ (HWCM) MRE(HWCM) RPD(HWCM) 

16 3.3011e+04 3.2779e+07 2.5893e+10 8.7271e-04 0.8665 2.8786e-05 
32 1.3157e+05 5.3063e+08 4.2927e+11 2.2143e-04 0.8930 1.7937e-06 
64 5.2530e+05 8.5398e+09 6.9955e+12 5.5747e-05 0.9062 1.1202e-07 
128 2.0992e+06 1.3704e+11 1.1298e+14 1.3983-e05 0.9128 7.0013e-09 
256 8.3927e+06 2.1958e+12 1.8161e+15 3.4967e-06 0.9148 4.3675e-10 

 
 

Fig. 3. Comparison of FEM & HWCM solution with exact solution for N=32 of Test Problem 3.  
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Table 7. Comparison of HWCM and FEM with Exact solutions for N=16 of the Test Problem 4. 

 
)32/1(=t

 

FEM 
(F) 

1.0e+03 * 

Exact 
(E) 

HWCM 
(H) 

Absolute Errors
 

E F−
 

1.0e+03 * 

HE −
 

1.0e-04 * 
1 3.9125 0.9998 0.9998 3.9115 0.0009 
3 3.0417 0.9985 0.9985 3.0407 0.0012 
5 2.9436 0.9960 0.9960 2.9426 0.0056 
7 2.9315 0.9921 0.9921 2.9305 0.0121 
9 2.9288 0.9871 0.9871 2.9279 0.0208 
11 2.9273 0.9809 0.9809 2.9263 0.0318 
13 2.9258 0.9736 0.9736 2.9249 0.0450 
15 2.9244 0.9653 0.9653 2.9234 0.0603 
17 2.9230 0.9560 0.9560 2.9220 0.0778 
19 2.9215 0.9460 0.9460 2.9206 0.0972 
21 2.9201 0.9351 0.9351 2.9192 0.1184 
23 2.9187 0.9236 0.9236 2.9178 0.1412 
25 2.9173 0.9116 0.9115 2.9164 0.1653 
27 2.9158 0.8990 0.8990 2.9149 0.1903 
29 2.9144 0.8860 0.8860 2.9135 0.2161 
31 2.9130 0.8728 0.8727 2.9121 0.2423 

 
Table 8. Error analysis of the Test Problem 4. 

N 
FEM HWCM 

∞L  mreL  rpdL  ∞L  mreL  rpdL  
8 9.8412e+02 1.1364e+03 6.1882e+07 9.2374e-05 1.0504e-04 2.2181e-07 
16 3.9115e+03 4.5166e+03 9.5948e+08 2.4231e-05 2.7763e-05 1.3842e-08 
32 1.5591e+04 1.8003e+04 1.5104e+10 6.2101e-06 7.1429e-06 8.6492e-10 
64 6.2248e+04 7.1877e+04 2.3968e+11 1.5723e-06 1.8120e-06 5.4055e-11 
128 2.4875e+05 2.8724e+05 3.8189e+12 3.9558e-07 4.5633e-07 3.3784e-12 
256 9.9453e+05 1.1484e+06 6.0974e+13 9.9210e-08 1.1450e-07 2.1115e-13 

 

 

Fig. 4. Comparison of FEM & HWCM solution with exact solution for N=32 of Test Problem 4. 
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