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Awatif M. A. Elsiddieg

Abstract:- In this work we give a detailed look toethDFP
method for solving  unconstrained optimization prems.
Section( 0 ), shows the history and developmentthef method .
Section (1), general theory of the problem is ddélsed |,
constricting on the practical side in the descripti . Section (2),
Newton's method is described . It constitute aidddase, both
theoretical and practical , for the class of met#® known as
Quasi —Newton method. From this class comes the DFRhoé
is described in section (3) . Detailed result oretBFP are shown
in this work .Section (4) shows a practical implentation of the
DFP method on quadratic function to test the thearatl results
shown in the work.

Tables of Notations:

®
X
X :[ : l = variable in an optimization (column vector in
x (™
R™)
x*, k =1,2,...=.iterates in an iteration method .
x" = (W ......x(™Arrow vector (transpose of a column
vector ) .

x* =Local minimizer or local solution.
P, P% =Search direction ( on iteration k ) .
f (x ) = Objective function .

V = First derivative operator .

of

ax(®
Vf(x) =g(x) =] :

of

dx(m)
§,8% =Correction tax®
p = Feasible direction.

£, g® = f(x®), g(x®) Respectively.
A transpose.
c® =Set of k times continuously differentiable functon
H® =Hessian matrix .
% f a2f
ax(D? axWgx(m)
Vf(x)=| i =6,
a%f a2f
Ax(Max®) ax(M?
There exist .
for all .
belongs to .
conclusion .
greater than .
less than .
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greater than or equal .
= less than or equal .
is the minimizing step length in iteration .

l. INTRODUCTION
Section (0):

Optimization might be defined as science of detaimg the
(best) solution to certain mathematically defineditems
which are often models of physical reality . It aiwes the
study of optimality criteria for problems. Many rhets for
solving minimization problems are variants of Nemso
method , which requires the specification of thessian
matrix of second derivatives .Quasi — Newton'shoes are
intended for the situation where the Hessian ieasgye or
difficult to calculate . Quasi — Newton's methad® only
the first derivatives to build an approximate Hasover a
number of iterations. This approximation is updagsth
iteration by a matrix of low rank, in unconstrained
minimization. his work is the variable metric et by
Davidon , Fletcher and Powel DFP.[3] Steepest el@sc
type methods had been applied in some physics qrahl
The Newton's method in many variables was known .
Cauchy made the first application of the steepesicent
method to solve unconstrained minimization problems
The development of the simplex method by [1]foreéin
problems. The work by Kuhn and Tucker [2]on the
necessary and sufficiency conditions for optimaltson of
programming problems laid the foundation for a gezal
of later research in non-linear problems laid thenfdation
for a great deal of later research in non-lineangpamming

. First application to Newton's method is by [5].

Section (1):

In this section, we give the theory of optimizatimmblems
, we give definitions and theorems and some exasnpl

Definitions and theorems:

Def.(1): (Unconstrained Optimization Problems)
The problem takes the form:

min f(g) .

XER™
Subject tox € R"
Is a compact set) Wherk is a continuous real valued
function R™
Def. (2): A point x € R"is said to be a relative minimum
point or a locafR™ if3 an € >0 such that ff)> f(x*)
Vx € R™a strict relative minimum point of ov&t™ .
Def.( 3): ( constrained optimization problem)
The general form of a constrained optimization probthe
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Subject to
i=p+1,.... ,n D.

Where ¢; is the ith constraint function .

the constraints

B Z da (ax@)

ci(g) =0 are termed equality constraints and the set of

such
¢;i(x) = 0 are termed inequality constraints denoted by

Def. (4YA point x € R" satisfying (1) is called a feasible
point and the set of all such points is called tbasible

region R .

R={x€R",c;(x)=0,i €E,i €]}

constraints is denoted by (E) and the cainssr

a(or\_  9*f dx® a2f  ax®
E(axm) = 57 00x0 g T T r@arm g NOW
—yn i(f’_f) ®
=14 \x® )P
0%f Of )

_\n @ —yn _ 97T
=Y nm P T L= e P

= (¢(x@n)”)

5 ) 2
af _ n p(t) (Gp) . Thus - % = ETGE' now we

da?

Def. (5) :Givenx € R"we say that a vectqr is a feasible have

direction atx if there is ana >0 such thatx +ap €
R",0 < a<a. points is

I. Some Theoretical Preliminaries

Def. (6): (lines onR™ )

Let x’ be a fixed point oR™ , letp be a fixed vector havmg fr©) = ﬁ

length unity||pll3 =1) @ here is termed a direction ) ,

line that passes through' and having directiop is define

by the se{x(a): x(a) = x' + ap} . Thus x(0) = x', ais
usually taken to be positive .

Taylor's Expansion dfx ) :

If fis smooth enough we can obtain an expression f%e Ta
to functions of one

Before we do that we consider the odtehange about
of f along given line . Let the ling(a) = x' + ap be given

Taylor's expansion of f similar

variable .

. Along this line ,f changes witha ,
function ofa , so we write :

f(a) =f (E(a)):f
ap2,..,.xn’+apn

(g' + ag) = f(x® 4+ ap®,x@" 4

The rate of change &fwith respect tm,g is given by :

af _ dx® of dx™ a5 ax®
da  ox® da = T axM da ~ “LiElgx® gq -

. o . dx® )
2@ = x® 4 ap® Now L0
- - — da —

df N Of

@ —
fom= ) PO = PV (x(@) =pTy (x(@).

i=1 —

L= pTg (x(@)or

Also we obtain the second derivativefofith respect tax
as follows :

dz_fzi(ﬂ)zi( n,2Lp0).
da? da \da da 16x(l)

is considered as a

f@) = FO) + af () + S f"(0) + ... .
d
Fo=2 =rea).
_=r6)p.

£ =f(x@) = f(x).

fla) = f(x@) =f(x' +ap). = (') + ap"g(x') +
%2 BTG(EI)B + ..

ylor expansion dfx)along the linex(a) = x' + ap

=x' . puttingh = ap ,we get
f(x' +h) = f(x') +hTg(x) +; KG(x)h+ ...

Proposition (1): (first order necessary condition)

Let S be a subset dR™ , and letfe ¢(1) be a function oi§ .
If x* is a relative any minimum point éfoverp , then for

any fe ®R" , that is a feasible direction af , we have
vf(x)p" = 0.
Corollary(1) :

Let S be a subset GR™ , letf € ¢, be a function ofR™ . If
x* is a relative minimum point dfover®™ and ifx* is an
interior point ofR™ , then

Vf(x') =

3-Descent directions at a point:

Consider the Taylor expansion fffc) aboutx’ up to the
first order term
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f (EI + ‘12) =f(x')+ap"yg (g’ + aGB).a >0
Where,&x 0 <1,

Since  f(x)
derivatives are continuous ), therfg(x) is p” g(x) <

0 vx ,then sufficiently close ta’ (by continuity ). Thus ifx
is taken sufficiently small,

p'g (5’ + a@g) <0.
more precisely 3a > 0 such that

p’g (5’ + aeg) <0 Vacel0,a].Thus

fx+ap) < f(x).

We notice that ifoTg’ < 0 , then the value of decreases
(locally if we move in the directiop) [7].

Such a direction is called a descent directiondt and it
chamcterized b;/ :

pTg' <0.

An example of a descent directionxatis p = —g’'since

—g'Tg’ < 0 providedg’ # 0.
Def .(7): (Definite and semi definite matrices )

Let C be symmetric matrix we say th@tis positive definite
if xTCx>0VvVxeR" x+0, Cis called positive semi
definite if x"Cx > 0 for x € R" .

Def. (8): ( Coincide with def. (7))

ISSN: 2394-367X, Volume-1 Issue-10, October 2015

Without loss of generality assume thdig* < 0 l.etp is

taken to be a descent direction . Taking 0 and the fact
that pg(x) is continuous we conclude that ( for

is smooth enough (i.e, all the pertialsufficiently smallerx )

fr>f (x* + ap) , contradicting the minimality dfat x*
.Thus

g =0is a necessary condition fat* to be a local
minimizer .

This condition is termed the first order necessanydition .
Now carrying this first order necessary conditionda
expandf aboutx™ up to the second orber term , we have :

fx +ap) = f) +3a%"[6 (x +abp)[p.

We claim thatz* must be positive semi-definite .

For if not , there must exist a directipn(i.e p € ®" ) for
which pTG*p < 0. The continuity of Gx) ensures that
there isa > 0 such that

ET(G (E* +a9g))g< OLVa<a .

Thusf (g* + ap) < f*.

Contradicting the minimiality of atx* . ThusG* must be
positive semi definite fox™ to be a minimizer . Thus we
proved :

Theorem (1):

Letx* be a a local minimizer for

minge‘}in f(&) :

Then the following two conditions are necessary :

(A1)g" =0 .

(A2)G*is positive semi definite .

The conditions(A1) and (42) are only necessay but not

The point x* € R" is called an unconstrained localSufficient forx* to be local minimizer as the following

minimizer  of f(x),if in

neighbourhood of™ .

some

f(x) = f(x")

In other words there exists no descent directiom™ator
equivalently.

f(g* + ag) > f(g*) Vp € R™.

and sufficiently small values of .

Now letx* be a minimum of(x), letx be the solution of :
mineqn f(x) .

Takep to be any direction . Exparfdaboutx™ along the
directi_onE .

f (f + “E) =f"+ap’g (5* + a@g) :

( here is not restricted in sign ) .

We claim thatc* must be zero . For if it is n@t, thenp” g*

can be positive or negativepfbeing not orthogonal t9* .

example reflects .

Example (1):

minegn f(x®,x@) = x — x@*
._[0

= [8]'

g = [0] '

G*=[8 8. 0

1
Condition (A2) is termed the second order necessary

condition forx™ to be a locel minimizer . It is possible to
obtain a sufficient condition using second ordertiph
derivatives as the following theorem

shows :

Theorem (2):

but a longp = ( ) the function decreases frofit = 0 .

Letx* be any point ifR™ satisfying the conditions :

(Bl)g" = 0.

is positive definite , ther™ is a local solution of BZ)"(
min f(x).

Proof :

Letp be any direction .
Expandf atx* alongg .
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f (x* + ap) =f"+ a2/2 pTG (x* + a@p) p _ class of methods known as variable metric methodwee

(UsingBl? - - = detailed description is given to the

l:]; straight forward to prove that there exisis> 0 such DFP method which belongs to the class of variald¢hods
r . .This method constitutes the major part of thisrkwvo

PG (E + “93)2 >0. Section (4) gives a practical implementation ts thethod

(using continuity and positive definitenessof. Newton' s Method :

Thus 3 a neighbouhood aof* for which f* < f(x)vx in

that neighborhood . All the local minimum x* of a continuous differential

Example (2): functionf satisfy the necessary condition

Use the sufficient conditions to obtain the solntad:

minxu),x(z)emzf(x(l),x(z)) = 3x(1)2 —xWx@ 4 4x(2)2 — g(g*) = Vf(g*) =0 (1D

x4+ x® +5

Solution: Equation (1) represents a set of non-linear equatighich

must be solved to obtain*. One approach to the
g= 6x((11)) - x(z)— 1 ] _ [0] minimization of f(x*)
= =+ 8 4+ 1 0 is therefore to seek the solutions of equationdgy)
including a provision to ensure that the solutioarfd does
- x ) = 7 | 47 indeed correspond to a local minimum.

47 is the Newton's method[2] . We shall consider thisthod
7 briefly and then turn to a class of methods knowrmgaasi-

x (2) = -9 The oldest method for solving a set of non-lineguagions

Newton's methods. Since they can be regarded as
approximation to Newton's method in some sense.
To solve the system of non-linear equations (1),
G ' = { 6 - 1} we first linearize the set of equations about spuiat x®
(which can be considered as the ith approximatmrnhe
minimum pointx™ ). Thus if

|G C | _ |6 - A -1 x* can be written as:
- 1 8 - A x* = x(i) + ' : * . .
x*=x p . the Taylor's expansion g{x") gives :
=(6-41)8-1)-1 2) 9(x) =g (g(i) + B) =g(x®)+ ¢Pp+ ...
=48 -141+ A% -1
oF i i i -
— 12 -14 ) + 47 (G |§ the He§5|an matrix ) .. By neglecting the higter
, terms in equation (2) and settiggx*) =0 (3) we
O A°-141+47 =0 obtain: g® + G®p =0

1 -14:7196-188 148 _ and 60 =6) where: g = G

12 ) , . , .
2 2 is the symmetric Hessian matrixfoevaluated atc(®”
Thus G* is positive definite. Therefore If G®is non-singular, the set of linear equation @) be
easily solved for the vectqy, and the derived minimum
. 1 (7 can be obtained as

A is a local minimize (In fact it is the = = Z
47\ -5 (

only one ) Thus the equation (3) gives :
Section (2): v p= G(i)_lg(i) . However ,in general , the higher order
terms in equation (2) are not neglible and henceeaative

procedure has to be wused to find the improved
In this section we give a brief description tevidon' s approximations. The scheme is thus given by:
method to minimize a general functibfx ) . This method ,

although lacks practically , gives a solid groundwide

Introduction:
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£(i+1) — £(i) + B = E(i) + G(i)—lg(i) (4)

x® 3@ 4@ D)

The sequence of pointsan be shown to converge to -
actual solutionc™ from any initial point

xWsufficiently close to the solution x* (theorem(2))

Provided the G® for everyi is nonsingular

Very restrictive and the method frequently failsctmverge
. If f (X) is quadratic ,
x*= A" . (5

XD = xO _ 414D — p)  xED = x* = 471p

ISSN: 2394-367XVolume-1 Issue-10, October 2015

XD = 5O 4 3OO0 = O _ OGO (7

Example (3):

-1

i @ @Dy ===
mlnieRnf(x , X )—x(1)2+x(2)2+2 .

From the starting point
(CO
% [o] '

Solution :

The gradient g and the Hessian matrix G of f avergby

_(or\ _ 2 pacy
9= (a_) - 2,22, @]
X (x(l) +x(@) +2) X

(6) o%f 2f
G _ ax(l)z ax(i)ax(z)
as: - a%f o2 f
ax(Dgx(2) 9x(@)?
2 2
_ 2 (=3xM" + 2" +2) —4x(Wx® At x@ = [4] @ _ [0.024]
(xD24x2)2 42’ —4xWx@ (=3x@* +x®* 1 2)] T ol 4 0

G = [—0.04580 1
0

0.0%17] -6

Hence equation (2.4) gives

~ (~0.0000975)

[0.000617 —63.4

0 —0.001580] 'z[ 0 12.0]‘

@) — ) _ -1,0) — 5.57
XU =x G—g —[0].

If we compare the values of f af" andx® , we find that ,

f® =-0.0556, andf® = —0.0303.

Thus f@ is greater tharf ™ and hence the method fails
make progress . (The true minimum poinx™ = [8] , with
f*=-0.5).

However if we use equation (7) instead of (5) the e
can be made to converge to the minimize p

"l. QUASI-NEWTON'S METHOD:

In optimization quasi-Newtonmethods (also known ¢
variable metricmethods) are algorithms for finding loc
maxima and minimaof functions Quas-Newton methods
are based ohewton's methodbo find thestationary poinof
a function, where thegradientis 0. Newton's methao
assumes that the function can be locally approxacthats &
quadratidn the region around the optimum, and use the
and second derivatives (gradient and Hessian)nm fihe
stationary point [8].

In Quasi-Newton methods thkessian matri of second
derivativesof the function to be minimized does not nee
be computed. The Hessian is updatey analyzing
successive gradient vectors instead. (-Newton methods
are a generalization of the=cant methotb find the root of
the first derivative for multidimensional prolms. In multi-

dimensions the secant equation is u-determined, and
quasiNewton methods differ in how they constrain
solution, typically by adding a simple l-rank update to the
current estimate of the Hessi

V.

As in Newton's method one uses a second or
approximation to find the minimum of a functif(x). The
Taylor serieof f(x) around an iterate

Fle +82) = fae) + V(507 + 5 027 Box

DESCRIPTION OF THE ME THOD

where (?f ) is thegradien andB an approximation to
the Hessian matrixThe gradient of this approximatis
(with respect ta\x) is:

Vf (2 +8x) = Vf(x) + BAx,

and setting this gradient to zero provides the [davetef
Ax = — B7Wf (%)
The Hessian approximatidt is chosen to satist
Vf(x +4x) = Vf(x) + BAx
which is called the secant equation(the Tayloreseaf the
gradient itself). In more than one dimensiB is under
determined In one dimension, solving fcBand applying
the Newton's step with the updated value is eqentab the
secant methad Various methods are used to find

IJBA
zo? s S C

0,
o7 1o
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solution to the secant equation that is symmeBT = B)
and closest to the current approximate viBy according to
some metricming||B — B,|| An approximate initial valu
of By = | is often sufficient to achieve rapid converger
The unknowny is updated applying the Newton's s
calculated using the current approximate HessiamnixrB,
Ax, = —a, B Vf (x)with o chosen to satisfy tl
Wolfe conditions

Xjer1 = Xpe + A X

The gradient computed at the new pBjftx,.,,), and

¥i = Vf (1) — Vf(x,)is used to update the proximate
HessiamB,,,, or directly its inverseH,,, = B!, using
the Sherman-Morrison formula

Gradient descent:

The analyticamethod called "Steepest desce
Gradient descent is a first-ordeptimizatior algorithm. To
find a local minimumof a function using gradient desce
one takes steps proportional to the negative oigradient
(or of the approximate gradient) of thenction at the
current point. If instead one takes steps propeafido the
positive of the gradienbne approacheslocal maximum of
that function; the procedure is then known as @t
descent.
Gradient descent is also known as steepest desmetiie
method of steepest descent. When known as the [e
gradient descent should not be confused witrmethod of
steepest descefur approximating integral
Gradient descent is based on the observation thiei
multivariable functionf (x)is definedanddifferentiablein a
neighborhood of a poinl , thefi(x)decreases fastest
one goes frona in the direction of the negative gradientf
ata,f (a). It follows that, if

b=a-yVf(a)
for y > 0 a small enough number, tifn) > f(b). With
this observation in mind, one starts with a gux,for a
local minimum of f, and considers the sequel
Xg, X1, X5, ...SUCh that

Xni1 =% — YV f(x,),n =0

We have:

f(20) 2 () = f(x2),
so hopefully the sequence,(jconverges to the desired lo
minimum. Note that the value of the step ¢ is allowed to
change at every iteration.
This process is illustrated in the picture to thght. Heref
is assumed to be defined on the plane, and thgtafsh ha:
a bowl shape. The blue curves are tlmtour line, that is,
the regions on which the value Bfis constant. A red arro
originating at a point shows the direction of thegative
gradient at that point. Note that the (negative) gradina
point is orthogonalto the contour line going through tt
point. We see that gradient descent leads us tbdtiem of
the bow]| that is, to the point where the value of the fiorc
fis minimal.
EXAMPLES:
Gradient descent has problems with pathologicattfans
such as th&osen rock functioshown here

flx,x) = (1= x,%) +100(x, — x%1)?

The Rosen rockunction has a narrow curved valley whi
contains the minimum. The bottom of the valley éswflat.
Because of the curved flat valley the optimizatier
zigzagging slowly with small step sizes towards
minimum.

11 .
X2

0.9

06 04 02 00 02 04 06 08y 10

IE] F06 14 Semionescs

The "Zigzagging" nature of thmethod is also evident
below, where the gradient ascent method is appdi

1 1
F(x,y) = sin(zx2 —Zyz + 3) cos (2x +1—e%)

LIMITATIONS :
For some of the above examples, gradient desce
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relatively slow close to the minimum: Technicallits
asymptotic rge of convergence is inferior to other methc
For poorly conditioned convex problems, gradiensceet
increasingly ‘'zigzags' as the gradients point e
orthogonally to the shortest direction to a minimpuwint.
For more details, seeommentdelow:

For nondifferentiable functions, gradient methods ar-
defined. For locallyLipchitz problems and especially f
convex minimization problem$undle method:of descent
are well-defined. Nomlescent methods, like sub gradi
projection methods, may also be used.

V. SOLUTION OF A LINEAR SYSTEM

Gradient descent can be used to solve a systermexr

equations, reformulated as a quadratic minimize

problem, e.g., usinfinear least squareSolution o
Ax—b=0

in the sense of linear least squares is definadiasnizing

the function

F(x) =Il Ax — b II?
In traditional linearleast squares for re:éA and b the
Euclidean nornis used, in which case:

VF(x) = 2AT(Ax — b)
In the case thaf is real, square, symmetric aipositive
definite, a different popular choice of the norr
lal?=aTA ta

which produces a different equation with a becondition
number

VF(x) = 2(Ax — b)
In either case, théine searchminimization, finding the
locally optimal step sizey on every iteration, can
performed analytically, and explic
formulas for the locally optimal y are known.

SOLUTION OF A NON -LINEAR SYSTEM :

Gradient descent can also be used to solve a sysfe
nonlinear equations. Below is an example that shHuaveto
use the gradient descent to solve for three unkr
variablesx;, x,, andxz. This example shows one iteration
the gradient descent.[7]

Consider a nonlinear system of equations:

3
3x; — cos(xyx3) — 3=
4‘x21 - 625x22 + xz - 1 = 0
10-3
exp(—xyx;) + 20x5 + =

3
suppose we have the function:

3x; — cos(x,x3) — 3

4x21 - 625x22 + xz - 1
m—3

10
exp(—x;,x,) + 20x5 + 3

X1
Where x = [le
X3

and the objective function F(x) = iGT(g)G@)

ISSN: 2394-367XVolume-1 Issue-10, October 2015

1 3\’
=3 <3x1 — cos(xyx3) — E)
+ (4x} — 625x% + 2x, — 1)2>

a2
+((exp(—x1x2) + 20x; + 107;—3) ) .
With initial guess:

X1 0
E(O) = xz = 0
X3 0

We know that:

x® = x© —y PF(x©@)
Where:
VF(x©@) = Jo(xO)T % G (x(©)
The Jacobian matrix,; (x(©)
Je =

3 sin(x,x3) X3 sin(x,x3) x5

8x, —1250x, + 2 0

—x; exp(—x1x;) — x;€xp (—x1X;) 20
Then evaluating these terms at

3 0 0
Jox®)=| 0o 2 0]
0 0 20
and
—-2.5
()[ _1]
10.472
So that

x(l) = x(O) — yOVF(x(O))

-7.5
and xW =x©@ —y | =2
209.44
F(x©®) = 0.5(-2.5)% + (—1)? + (10.472)% =
58.456
F (=58 £55136; Rorabicr
e - “k\"‘- ﬁ S
1 — ki . X

An animation showing the first 83 iterations of djemt
decent applied to this example. Surfacesisosurfacesof
F(x™)at current guead', and arrows show the direction
descent. Due to a small and constant step size
convergence is slow.

Now a suitabley, must be found suclthatF(x™) <
F(x®). This can be done with any of a variety line
searchalgorithms. One might also simply guey, = 0.001
which gives
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0.0075 1) Start with an initial pointx™® and an £ x n)
x® =1 0.002 " - , Ly
—020944 positive definite symmetric matrik‘" is taken as
the identity matrix | . Set iteration number as i=1
evaluating at this value, 2) Compute the gradient of the functiohf® at the

point x® and set p®W=-HOGO

F(xW) = 0.5((—2.48)? + (—1.00) + (6.28)?) L - -
= 23.306 @

The decrease froi(x(?)) = 58.456to the next step's value (for the first iteration the search directipft) = —g®

of F(x®) = 23306 is a sizable decrease in the objective 3) Find the optimal step lengtfi’® =1 in the

function. Further steps would reduce its value luati directionp® and set

solution to the system was found. -

XD = x4 JOp® @)
VL. COMMENTS - - =

Gradient descent works in spaces of any number of A*Wp® = D _ 5O ()

dimensions, even in infinite-dimensional ones. Ha tatter N

case the search space is typicalljuaction spaceand one q® = gD — g® (4)

calculates theGateaux derivativeof the functional to be - - -

minimized to determine the descent direction. 4) Test the new point@*D for optimality . If x+D

The gradient descent can take many iterations ngpate a

i . . . . is optimal terminate the iterative process
local minimum with a requiredccuracy if the curvaturein

.Otherwise go to step (5).

different d|rect|o_n3 is very dl_ffer(_ant for _the givéunction. 5) Update the Hessian matrix as :
For such functionspreconditioning which changes the
geometry of_ the space to shape the function levtd kke _ HGED = g 4 y® 4 NO (5)
concentric circlescures the slow convergence. Constructing 0T
and applying preconditioning can be computationally where M® = — T (6)
expensive, however. oo 2R
; . - 0 (HOO) D)
The gradient descent can be combined witina search NO=— " = = 7 7)
finding the locally optimal step sizg on every iteration. 4@ HOg® .
Performing the line search can be time-consuming. The following example describes the steps of the
Conversely, using a fixed smalf can yield poor Procedure
convergence. Example (1):

Methods based ohlewton's methodand inversion of the
Hessianusing conjugate gradientechniques can be better  min f(x®,x®) = x® —x® + 2xW? 4 2xWx@
alternatives® Generally, such methods converge in fewer xeR

iterations, but the cost of each iteration is highAn +x®°

example is thé8FGS methodwhich consists in calculating

on every step a matrix by which the gradient vedtor With initial point x® = [g]
multiplied to go into a "better" direction, combthevith a

more sophisticatetine searchalgorithm, to find the "best" Solution :

value of y. For extremely large problems, where the

computer memory issues dominate, a limited-memoryre Known as inverse update formulas slice thergevef
method such as-BFEGS should be used instead of BFGS othe off.

the steepest descent. The DFP and the BFGS[1] formulas belong to a faroily
Gradient descent can be viewed @sler's methodfor rank 2 updates known as Huang's family of updateisiw
solvingordinary differential equatione(t) = Vf(x(t))ofa can be expressed for updating the inverse of the'

gradient flovirhe gradient descent algorithm is applied t®AVIDON- FLETCHER and POWELL METHOD .
find a local minimum of the functiof(x)=x"-3+2, with

919 d; d i
derivative f'(x)=4x>-9x%. Here is an implementation in the Bira] = Pi([Bil - l] +91y,y + g
Python scripting language .where
Davidon- Fletcher and Powel method Tested On
Quadratic Functions: [Bilgi
o vi=(g" [B]g,)(T o
Introduction: d.g; g Bilgi

These methods are the best general purpose urmioestr p, and 9,are constant parameters,
optimization techniques making use of the derivegiy that
is carefully available ,at the iterative procedwt this It has beer, shown that Eq. maintains the symmatry

method can be shown in the following algorithm:
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positive definiteness oE B Pi+1 ] if [ B i ] is symmetric Since:
and positive definite. Different choices 8fand 6; in Eq. x,,, = x; — 1*S; 4)
lead to different Algren algorithms. For examplehen
P, = 1and 6; =1 Eq. yields the BFGS formula, [9]. Equation (3) becomes:
Example (2):
gi = A% ASL (5)

Show that the DFP method is a conjugate method.
Pre -multiplication of Eq. (5) by [B] leads to :

Solution: consider the quadratic function [Bi+11[A]S; = %[Bi] + [M;] + [N:1g; (6)
fG) = 2xTAx + BTx +C (1) Eqg. (4) and (5) yield:
For which the gradient is given by S S_T g, .
[Mi]lg, =——=—"=AS @)
Vf=Ax+b 2 Si g;
9 = Vfer = Vfi = AXisa = x1) (3?£q (6) can be used to  obtain
B lg, \g/'[B,]1" g,
[Ni]gi=([ T)( )=—[Bi]gl ................... ( 8)
g9, [Bilg;

Since [Bi] is symmetric . By subsisting Eqs (7) dBlinto. (6), we obtain:

(Bl AlS, = —-(B1g, + AS, ~[B1g,)= S e . (9)

T
The quantity S| +1 [A] S, can be written as:

S’ +[AlS, = -(B,.,]10f.,,) [A]S,

= OfT Bl A]S = -0fLS = 0 s e .(10)
X 0 = [—1.000
Since /1 is the minimizing step in the direction;. S 1.000
Equation () proves that the successive directions generated @y _ [—1.000
in the DFP method are conjugate and hence the whétho (5 ) ~11.000
conjugate gradient method.
Section4): Iteration no.1
Implementation _of the Davidon —Fletcher —Powel
method: Alpha = 0.5000 f = -1.25000¢" = x® = [;15888

In this section we write a Matlab program and féstn . 0.000
some quadratic problems. H(K ) = [0_000
Applications and Results:

. 1
2 = 2x W% 4 4 (2% ,(0) —
1) mingey £(x) = x@ — x® 4 xOF 4 2xOx@ 4 ) mingege f(x) = 260"+ 2@ x [0.5]

x@%x© = [g] Iteration no.0

lteration no.0 Alpha = 0.2576f = 0.060606

—0.0303 —0.1212
alpha = 1.0000 W = [ 1.2424 ] g(£(1)) = [ 0.4848

f=-1.00000
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alpha = 0.4924 = 0.0000

. _ @y _ [0.0000] ) _ 0.0000
=X [0.0000]9(5 ) [0.0000
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