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The Davidon Fletcher and Powel Method Tested on 
Quadratic Functions 

Awatif M. A. Elsiddieg 

Abstract:- In this work we give a detailed look  to the DFP 
method for solving  unconstrained optimization problems. 
Section( 0 ), shows the history and developments of the method . 
Section (1),  general theory of the problem  is described , 
constricting on the practical side in the description . Section (2), 
Newton's   method is described . It constitute a solid base, both 
theoretical and practical  , for the class of methods known as 
Quasi –Newton method. From this class comes the DFP method 
is described in section (3) . Detailed result on the DFP are shown 
in this work .Section (4) shows a practical implementation of the 
DFP method on quadratic function to test the theoretical results 
shown in the work. 

Tables of Notations: 

x =�����⋮����� ≡ variable in an optimization (column vector in 

R� ) ��, � = 1,2,	…≡.iterates in an iteration method . �� = �����……����Arrow vector (transpose of a column 

vector ) . �∗ ≡Local minimizer or local solution. �	, ���� ≡Search direction ( on iteration k ) . 

f (� )	≡ Objective function . ∇	≡	First derivative operator . 

∇���� = ���� = � ����� �⋮�����!�
". 

#	, #��� ≡Correction to ���� $  ≡  Feasible direction. ����	, ���� ≡ �������, �������	Respectively. %�   ≡     A  transpose. &��� ≡Set of k times continuously differentiable functions . '��� ≡Hessian matrix . 

∇(���� = )**
+ �,���� �, �,���� ����!�⋮ ⋮�,����!���� � �,����!�, -..

/ = 0	. 
∃		       ≡       There exist . ∀		       ≡       for all . ∈		       ≡       belongs to . ⊂		       ≡      conclusion . >		    ≡         greater than . <		   ≡         less than . 
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≥		   ≡         greater than or equal . ≤			≡           less than or equal . 9∗�		:�     ≡   is the minimizing step length in iteration . 

I.  INTRODUCTION 

Section (0): 

Optimization might be defined as science of determining the 
(best) solution to certain mathematically defined problems , 
which are often models of physical reality . It involves the 
study of optimality criteria for problems. Many methods for 
solving minimization problems are variants of Newton's 
method , which requires the specification of the Hessian  
matrix  of second derivatives .Quasi – Newton's methods are 
intended for the situation where the Hessian is expensive or 
difficult to calculate . Quasi – Newton's  methods use only 
the first derivatives  to build an approximate Hessian over a 
number of iterations. This approximation is updated each 
iteration by a matrix of low rank, in unconstrained 
minimization. his work  is  the variable metric method by 
Davidon , Fletcher and Powel  DFP.[3] Steepest descent 
type methods had been applied in some physics problems. 
The Newton's  method in many variables was known . 
Cauchy made the first application of the steepest descent 
method to solve unconstrained minimization problems . 
The development of the simplex method by [1]for linear 
problems. The work by Kuhn and Tucker [2]on the 
necessary and sufficiency conditions for optimal solution of 
programming problems laid the foundation for a great deal 
of later research in non-linear problems laid the foundation 
for a great deal of later research in non-linear  programming 
. First application to Newton's  method is by [5]. 

Section (1): 

In this section, we give the theory of optimization problems 
, we give definitions and theorems  and some examples . 

Definitions and theorems:  

Def.(1): (Unconstrained Optimization  Problems ) 
The problem takes the form:  																																min																																															�∈ℜ!								 ����	. 
Subject  to  � ∈ ℜ�  
Is a compact set) Where f  is a continuous real valued 
function (ℜ� 
Def. (2): A point � ∈ ℜ�is said to be a relative minimum 

point or a local	ℜ� if 	∃ an ℰ > 0 such that f(�)≥ f(�∗) ∀� ∈ ℜ�a strict relative minimum point of over ℜ� . 
Def.( 3): ( constrained optimization problem ) 
The general form of a constrained optimization problem the 
form. 
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min�∈ℜ! 			����	. 
B:��� = 0	, C = 1,2, …… , $									Subject to 

cE�x� ≥ 0,						i = $ + 1	, …… , H																�1�.     
Where B: is the ith constraint function . the constraints B:��� = 0 are termed equality constraints  and the set of 
such  constraints is denoted by (E) and the  constraints B:��� ≥ 0 are termed inequality constraints denoted by�Ι�. 
Def. (4):A point � ∈ ℜ� satisfying (1) is called  a feasible 
point and the set of all such points is called the feasible 
region R . 

R= { � ∈ ℜ�	, B:��	� ≥ 0, C	 ∈ I	, C	 ∈ J} 
Def. (5) :Given � ∈ ℜ�we say that a vector $ is  a feasible 

direction at �  if  there is an  L > 0	 such that  � + L$ ∈ℛ�, 0 < L < L.  points is  

II.  Some Theoretical Preliminaries 

Def. (6): (lines on ℜ� ) 

Let �′ be a fixed point of ℜ� , let $ be a fixed vector having 

length unity�‖$‖(( =1)  ($ here is termed a direction ) , the 

line that passes through   �′ and having direction $ is define 

by the set P��L�:	��L� = �R + L$S . Thus  ��0� = �R,   L	is 

usually taken to be positive . 

Taylor's Expansion of f(� ) : 

If f is smooth enough we  can obtain an expression for 
Taylor's expansion of  f  similar   to functions of one 
variable .  Before we do that we consider the rate of change 
of f  along given line . Let the line  ��L� = �R + L$	be given  

. Along this line , f changes with L ,  is considered as a 
function of L , so we write : 

f�L� =f	T��L�U=f T� ′ + L$U  = ������V + L$���, ��(�V +L$2,…,�H′+L$H 

The rate of change of f with respect to L	, W�WX is given by : 

W�WX = YYZ�[� \Z�[�\] +	……+ �����!� W��!�WX = ∑ �����_� W��_�WX�:`�  . 

��:� = ��:�V + L$�:�.   Now         
W��_�WX = $�:�	. 

∴ b�bL = 	c d�d��:� $�:�
�
:`� =	$�	∇� T��L�U 		= pf� T��L�U	. 

W�WX = $�� T��L�U	or 

Also we obtain the second derivative of f with respect to L 
as follows : W,�WX, = WWX TW�WXU = WWX T∑ �����_� $�:��:`� U	. 

=c bbL g ∂�∂x�E�ip�E�.
�
E`�  

WWX T �����_�U = �,���� ����_� W��_�WX +	……+ �,���� ����!� W��_�WX 	.Now 

= ∑ WWX T �����_�U�:`� $�:�. 
= ∑ �,����_����_� $�:�.�:`� 	= ∑ �,����j����j� $�k��k`� 	. 

=	g0 T��L�$U�:�i. 

W,�WX, =	∑ $�:� T0$U�:�	�:`�  . Thus   ∴ W,�WX, = $�0$ . now we 

have 

��L� = ��0� + 	L�R�0� +	X,( �RR�0� +	….			. 
�R�0� = 	 lb�bLmX`n =	��	���R�		. 

�RR�0� = 	 lW,�WX,oX`n =	$�0��R�$	. 
��0� = � T��0�U = ���R�	. 

��	L� = � T��L�U = � T�R + L$U. = ���R� + 	L$����R� +	X,( 	$�0��R�$ +	…. 

The Taylor expansion of f���along the line ��L� = �R + L$ 

about 

x = �R  . putting ℎ = L$ ,we get 

f��R + ℎ� = ���R� + ℎ����R� + �( 	ℎ�0��R�ℎ +	…… 

Proposition (1):  (first order necessary condition) 

Let q be a subset of ℜ� , and let f∈ ȼ
���

 be a function on q . 
If �∗ is a relative any minimum point of f over $ , then for 

any f	∈ ℜ� , that is a feasible direction at �∗ , we have  ∇���∗�$� ≥ 0 . 

Corollary( 1) :  

Let q be a subset of ℜ� , let f ∈ ȼ���, be a function on ℜ� . If �∗ is a relative minimum point of f over ℜ�  and if �∗ is an 

interior point of ℜ� , then 

∇���∗� = 0. 

 3-Descent directions at a point: 

Consider the Taylor expansion of f��� about �R up to the 

first order term 
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� T�R + L$U = ���R� + L$�� T�R + Ls$U.α > 0  .      

 Where,0< s < 1 , 

Since   f���    is smooth enough (i.e, all the pertial 

derivatives are continuous ), then $����� is $� g��� <0	∀�	,then sufficiently close to �R (by continuity ). Thus if L 
is taken sufficiently small, $�� T�R + Ls$U < 0	. 
more precisely   ∃L > 0 such that 

$�� T�R + Ls$U < 0							∀L ∈ u0, Lv	.Thus                 � T�R + L$U < ���R�	. 
We notice that if $��R < 0 , then the value of � decreases 

(locally if we move in the direction $) [7]. 

Such a direction $ is called a descent direction at �R, and it 

chamcterized  by : $��R < 0	.	
An example of a descent direction at �R  is  $ = −�Rsince −�Rx�R < 0 provided �R ≠ 0	. 
Def .(7 ): (Definite and semi definite matrices ) 

Let & be symmetric matrix we say that & is positive definite 
if ��	&� > 0 ∀� ∈ ℜ� ,� ≠ 0 , C is called positive semi 
definite if ��∁� ≥ 0 for � ∈ ℜ� . 

Def. (8): ( Coincide  with def . (7)) 

The point �∗ ∈ ℜ� is called an unconstrained local 

minimizer of f���,if f��� ≥ ���∗�						 in some 
neighbourhood of �∗ . 
In other words there exists no descent direction at �∗  or 
equivalently. 

fT�∗ + L$U ≥ ���∗�														∀$ ∈ ℜ�. 

and sufficiently small values of  L . 

Now let �∗ be a minimum of f���	,		let � be the solution of : 

min�∈ℜ! ����	.	
Take $  to be any direction . Expand f about �∗  along the 

direction $ . 

� T�∗ + L$U = �∗ + L$�� T�∗ + Ls$U	 . 
(  here is not restricted in sign ) . 

We claim that �∗ must be zero . For if it is not 0 , then $��∗ 
can be positive or negative if $ being not orthogonal to �∗ . 

Without loss of generality assume that $��∗ < 0  I.et $ is 

taken to be a descent direction . Taking L > 0 and the fact 
that $�����  is continuous we conclude that ( for 

sufficiently smaller L ) �∗ > � T�∗ + L$U ,  contradicting the minimality of f at �∗ 
.Thus �∗ = 0	is a necessary condition for �∗ to be a local 

minimizer . 
This condition is termed the first  order necessary condition . 
Now carrying this first order necessary condition and 
expand f about �∗ up to the second orber term , we have : � T�∗ + L$U = ���∗� + �(L($� {0 T�∗ + Ls$U| $ . 

We claim that 0∗ must be  positive semi-definite . 
For if not , there must exist a direction $ (i.e $ ∈ ℜ� ) for 

which $�0∗$ < 0. The continuity of G���  ensures that 

there is L > 0 such that $� g0 T�∗ + Ls$Ui $ < 0, ∀L < L		 . 
Thus � T�∗ + L$U < �∗	. 
Contradicting the minimiality of f at �∗ . Thus 0∗  must be 
positive semi definite for �∗ to be a minimizer . Thus we 
proved : 
Theorem (1): 
Let �∗ be a a local minimizer for min�∈ℜ! ����	. 
Then the following two conditions are necessary : �%1��∗ = 0	 . �%2�0∗is positive semi definite . 
The conditions �%1� and �%2� are only necessay but not 
sufficient for �∗  to be local  minimizer  as the following  
example  reflects . 

Example (1): min�∈ℜ! ������, ��(�� = ����} − ��(�} . x∗ = {00|. g∗ = {00|	. 0∗ = {0 00 0|.	
but a long $ = T01U the function decreases from �∗ = 0 . 

Condition (A2) is termed the second order necessary 
condition for �∗ to be a locel minimizer .   It is possible to  
obtain a sufficient condition using second order partial 
derivatives as  the following theorem 
shows : 
Theorem (2): 

Let �∗ be any point in ℜ� satisfying the conditions : 
(B1)�∗ = 0	. 
is positive definite , then �∗ is a local solution of   B2)0∗( min�∈�! ����	. 
Proof : 
Let $ be any direction . 

Expand f at �∗ along $ . 
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� T�∗ + L$U = �∗ + L( 2� 	$�0 T�∗ + Ls$U $	 .             

(UsingB1) 
It is straight forward to prove that there exists  L > 0 such 
that $�0 T�∗ + Ls$U $ > 0	 . 
(using continuity and positive definiteness of 0 ). 
Thus  ∃ a neighbouhood of �∗ for which �∗ < ����∀� in 
that neighborhood . 
Example (2): 
Use the sufficient conditions to obtain the solution of: �������,����∈���� ����,����� = ������ − �������� + ������ −���� + ���� + �				
Solution: 

 � =	� ����� − ���� − �−���� + ����� + �� 		= {��| 
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Section (2): 

Introduction:  

 In this section  we give a brief  description to Newton' s 
method to minimize a general function f ( x ) . This method , 
although  lacks  practically , gives a solid ground to wide 

class of methods known as variable metric methods . Three 
detailed description is given to the   

DFP method which belongs to the class of variable methods 
.This method constitutes the major  part of this work . 
Section (4) gives  a practical implementation to this method 
.Newton' s Method : 

All the local minimum  �∗  of  a continuous differential  

function f  satisfy the necessary condition  

���∗� = ∇f��∗� = 0			�1�															 
Equation (1) represents a set of non-linear equations which 
must be solved to obtain �∗.  One approach to  the 

minimization of  ���∗� 
is  therefore to seek the solutions of equations(1) by 
including a provision to ensure that the solution found does 
indeed correspond to a  local  minimum.  

The oldest method for solving a set of non-linear equations 
is the Newton's method[2] . We shall consider this method 
briefly and then turn to a class of methods known as quasi- 
Newton's methods. Since they can be regarded as 
approximation to Newton's method in some sense. 
To solve the system of non-linear equations (1),  
we first linearize the  set of equations about some point ��:�  
(which can be considered as the ith approximation to the 
minimum point �∗ ). Thus if �∗  can be written as:  

�∗ = ��:� +	$ , the Taylor's expansion  of ���∗�	gives ∶ 
2)  (���∗� = � T��:� +	$U = ����:�� +	0�:�$ +	……. 
(0�:� is the Hessian matrix )  . By neglecting the high order 

terms in equation (2) and setting  ���∗� = 0								 (3) we 

obtain :    ��:� + 0�:�$ = 0 

and        0�:� = 0���:��  where:     ��:� = 0�:�$ 

is the symmetric Hessian  matrix of f  evaluated at  ��:� 
If   0�:�is non-singular, the  set of linear equation  (3) can be 
easily solved for the vector $, and  the derived  minimum 

can be obtained as  �∗ =	��:� + $ . 

Thus the equation (3) gives : 

∵ 	p = 	0�:�� ��:�  . However ,in general , the higher order 

terms in equation (2) are not neglible and hence an iterative 
procedure has to be used to find the improved  
approximations. The scheme is thus given by: 
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      ��:��� =	��:� + $ = 	��:� + 0�:�� ��:�	
����, ��(�, ����, … , ��:���

The sequence of points can be shown to converge to the 
actual solution �∗ from any initial point  

����suf�iciently	close	to	the	solution	�∗	�
Provided the   0�:� for every ¢ is non-singular .

Very restrictive and the method frequently fails to converge 
. If f ( x) is quadratic , 

�∗ �	%£�¤  .   (5)                         

   x�E��� �	x�E� w %£��%��:� w	¤� .��:��
(6) 

as : 

.� (
T�� �,���,�,�(U¥ 	 ¦�w3�

���, G ����, G 2�w4������(�
.0��� � {w0.04580 00 0.0617

Hence equation (2.4) gives 

If we compare the values of f at ���� and �
��(� � w0.0556, Hb��(� �

Thus ��(� is greater than ���� and hence the method fails to 

make progress . (The true minimum point is �∗ � w0.5 ). 

However if we use equation (7) instead of (5) the method 
can be made to converge to the minimize point.

III.  QUASI-NEWTON 'S METHOD

In optimization, quasi-Newton methods (also known as 
variable metric methods) are algorithms for finding local 
maxima and minima of functions. Quasi
are based on Newton's method to find the 
a function, where the gradient is 0. Newton's method 
assumes that the function can be locally approximated as a 
quadratic in the region around the optimum, and use the first 
and second derivatives (gradient and Hessian) to find the 
stationary point [8]. 
      In Quasi-Newton methods the Hessian matrix
derivatives of the function to be minimized does not need to 
be computed. The Hessian is updated b
successive gradient vectors instead. Quasi
are a generalization of the secant method 
the first derivative for multidimensional proble
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� �	         (4) 

� � 
can be shown to converge to the 

�theorem�2��	 
singular . 

Very restrictive and the method frequently fails to converge 

 

� �� �	�∗ � %£�¤ .        

��:��� � ��:� G 9∗�:�$�:� �	��:�
Example (3): 

min�∈�! ������, ��(�� � £�� �,��
From the starting point  

x��� � {40|	 . 
Solution : 

The gradient g and the Hessian matrix G of f are given by :

� � T����U � (
T�� �,���,�,�(U, ������(

0 � ¯ �,���� �, �,���� ����,��,���� ����,� �,����,�,
°		 

� w4������(��w3��(�, G ����, G 2�±	 . At ���� � {40|	. ���� �	 {0

0617|	.  0£� � ��£n.nnnn²³´� {0.000617 00 w0.01580|				 .�

��(� � ���� w 0£���!� � {5.570 |	 . 
��(� , we find that , 

w0.0303	.	
and hence the method fails to 

make progress . (The true minimum point is �∗ � {00|  , with 

ever if we use equation (7) instead of (5) the method 
can be made to converge to the minimize point. 

S METHOD : 

methods (also known as 
methods) are algorithms for finding local 

. Quasi-Newton methods 
to find the stationary point of 

is 0. Newton's method 
assumes that the function can be locally approximated as a 

in the region around the optimum, and use the first 
and second derivatives (gradient and Hessian) to find the 

Hessian matrix of second 
of the function to be minimized does not need to 

be computed. The Hessian is updated by analyzing 
successive gradient vectors instead. Quasi-Newton methods 

 to find the root of 
the first derivative for multidimensional problems. In multi-

dimensions the secant equation is under
quasi-Newton methods differ in how they constrain the 
solution, typically by adding a simple low
current estimate of the Hessian.

IV.  DESCRIPTION OF THE ME

As in Newton's method, one uses a second order 
approximation to find the minimum of a function 
Taylor series of f(x) around an iterate is:

���� G ∆�� · ����� G
where ( ) is the gradient
the Hessian matrix. The gradient of this approximation 
(with respect to ∆�) is: 

����� G ∆�� ·
and setting this gradient to zero provides the Newton step:∆� � 	w	¸
The Hessian approximation H is chosen to satisfy:����� G ∆
which is called the secant equation(the Taylor series of the 
gradient itself). In more than one dimension 
determined. In one dimension, solving for 
the Newton's step with the updated value is equivalent to the 
secant method. Various methods are used to find the 
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� � w 0�:�� ��:� .      (7) 

���,�,�(	 . 

The gradient g and the Hessian matrix G of f are given by : 

����(�� .	

{0.0240 | 
{w63.4 00 16.0|	. 

dimensions the secant equation is under-determined, and 
Newton methods differ in how they constrain the 

solution, typically by adding a simple low-rank update to the 
current estimate of the Hessian. 

ESCRIPTION OF THE ME THOD  

, one uses a second order 
approximation to find the minimum of a function f(x). The 

around an iterate is: 

� �������∆� G 12∆��¸∆� 

gradient and B an approximation to 
. The gradient of this approximation 

� ������ G ¸∆�� 

and setting this gradient to zero provides the Newton step: ¸£������� 
is chosen to satisfy: ∆�� � 	������ G ¸∆� 

which is called the secant equation(the Taylor series of the 
gradient itself). In more than one dimension B is under 

. In one dimension, solving for Band applying 
the Newton's step with the updated value is equivalent to the 

. Various methods are used to find the 
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solution to the secant equation that is symmetric (
and closest to the current approximate value 
some metric ¹º»¸‖¸ w ¸¼‖ An approximate initial value 
of B0 = I  is often sufficient to achieve rapid convergence. 
The unknown xk is updated applying the Newton's step 
calculated using the current approximate Hessian matrix ∆�� �	wL�¸¼£�½�����with α chosen to satisfy          the 
Wolfe conditions: ���� �	�� G ∆	�� 
The gradient computed at the new point��¾¼ � �������� w	������is used to update the ap
Hessiaņ ¼��, or directly its inverse ¿¼�
the Sherman-Morrison formula. 

Gradient descent: 

The analytical method called "Steepest descent".
Gradient descent is a first-order optimization
find a local minimum of a function using gradient descent, 
one takes steps proportional to the negative of the 
(or of the approximate gradient) of the fu
current point. If instead one takes steps proportional to the 
positive of the gradient, one approaches a 
that function; the procedure is then known as gradient 
descent. 
Gradient descent is also known as steepest descent, or the 
method of steepest descent. When known as the latter, 
gradient descent should not be confused with the 
steepest descent for approximating integrals.
Gradient descent is based on the observation that if the 
multivariable function ����is defined and 
neighborhood of a point , then ����decreases fastest if 
one goes from a in the direction of the negative gradient of 
at a,��À�. It follows that, if ¤ �  w 	Á�	��
for γ > 0 a small enough number, then�
this observation in mind, one starts with a guess 
local minimum of f, and considers the sequence �n, ��, �(, …such that ���� � �� w Á�	�����
We have: ���n� 7 ����� 7 ���(�, … 
so hopefully the sequence (���converges to the desired local 
minimum. Note that the value of the step size 
change at every iteration. 
This process is illustrated in the picture to the right. Here 
is assumed to be defined on the plane, and that its graph has 
a bowl shape. The blue curves are the contour lines
the regions on which the value of F is constant. A red arrow 
originating at a point shows the direction of the negative 
gradient at that point. Note that the (negative) gradient at a 
point is orthogonal to the contour line going through that 
point. We see that gradient descent leads us to the bottom of 
the bowl, that is, to the point where the value of the function 
f is minimal. 
EXAMPLES: 
Gradient descent has problems with pathological functions 
such as the Rosen rock function shown here:����	, �(� � �1 w ��(� G 100
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solution to the secant equation that is symmetric (¸Â = B) 
and closest to the current approximate value Bk according to 

An approximate initial value 
is often sufficient to achieve rapid convergence. 

is updated applying the Newton's step 
calculated using the current approximate Hessian matrix Bk 

chosen to satisfy          the 

�������, and 

is used to update the approximate 

�� �	¸£�¼��using 

method called "Steepest descent". 
optimization algorithm. To 

of a function using gradient descent, 
one takes steps proportional to the negative of the gradient 
(or of the approximate gradient) of the function at the 
current point. If instead one takes steps proportional to the 

, one approaches a local maximum of 
that function; the procedure is then known as gradient 

Gradient descent is also known as steepest descent, or the 
steepest descent. When known as the latter, 

gradient descent should not be confused with the method of 
for approximating integrals. 

Gradient descent is based on the observation that if the 
and differentiable in a 

decreases fastest if 
in the direction of the negative gradient of f 

� ��� 5 ��¤�. With 
this observation in mind, one starts with a guess �nfor a 

, and considers the sequence 

� �, H 7 0 

converges to the desired local 
minimum. Note that the value of the step size γ is allowed to 

This process is illustrated in the picture to the right. Here f  
is assumed to be defined on the plane, and that its graph has 

contour lines, that is, 
is constant. A red arrow 

originating at a point shows the direction of the negative 
nt at that point. Note that the (negative) gradient at a 

to the contour line going through that 
point. We see that gradient descent leads us to the bottom of 

, that is, to the point where the value of the function 

Gradient descent has problems with pathological functions 
shown here: 100��( w �(��( 

The Rosen rock function has a narrow curved valley which 
contains the minimum. The bottom of the valley is very flat. 
Because of the curved flat valley the optimization is 
zigzagging slowly with small step sizes towards the 
minimum. 

The "Zigzagging" nature of the 
below, where the gradient ascent method is applied to.

Ã��, Ä� � sin g12 �( w 14Ä(
F

L IMITATIONS : 
For some of the above examples, gradient descent is 
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function has a narrow curved valley which 
contains the minimum. The bottom of the valley is very flat. 
Because of the curved flat valley the optimization is 
zigzagging slowly with small step sizes towards the 

 

The "Zigzagging" nature of the method is also evident 
below, where the gradient ascent method is applied to. 

( G 3i cos	�2� G 1 w ÅÆ� 

 

For some of the above examples, gradient descent is 



relatively slow close to the minimum: Technically, its 
asymptotic rate of convergence is inferior to other methods. 
For poorly conditioned convex problems, gradient descent 
increasingly 'zigzags' as the gradients point nearly 
orthogonally to the shortest direction to a minimum point. 
For more details, see Comments below: 
    For non-differentiable functions, gradient methods are ill
defined. For locally Lipchitz problems and especially for 
convex minimization problems, bundle methods 
are well-defined. Non-descent methods, like sub gradient 
projection methods, may also be used.  

V. SOLUTION OF A LINEAR SYSTEM

Gradient descent can be used to solve a system of linear 
equations, reformulated as a quadratic minimization 
problem, e.g., using linear least squares. Solution of%� w ¤ � 0 
in the sense of linear least squares is defined as minimizing 
the function Ã��� �∥ %� w ¤
In traditional linear least squares for real 
Euclidean norm is used, in which case: �Ã��� � 2%�(%� w ¤� 
In the case that A is real, square, symmetric and 
definite, a different popular choice of the norm is∥  ∥(� �%£�
which produces a different equation with a better 
number: �Ã��� � 2�%� w
In either case, the line search minimization, finding the 
locally optimal step size γ on every iteration, can be 
performed analytically, and explicit formulas	for	the	locally	optimal	γ	are	known
SOLUTION OF A NON -LINEAR SYSTEM : 

Gradient descent can also be used to solve a system of 
nonlinear equations. Below is an example that shows how 
use the gradient descent to solve for three unknown 
variables, x1, x2, and x3. This example shows one iteration of 
the gradient descent.[7] 
Consider a nonlinear system of equations: 

3�� w cos��(��� w 324�(� w 625�(( G �( wexp�w���(� G 20�� G �nÌ£�� = 0 

suppose we have the function: 

3�� w cos��(��� w4�(� w 625�(( G �
exp�w���(� G 20�� G

Where  � � ����(��� 
and the objective function :   Ã��� � �(0�
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relatively slow close to the minimum: Technically, its 
te of convergence is inferior to other methods. 

For poorly conditioned convex problems, gradient descent 
increasingly 'zigzags' as the gradients point nearly 
orthogonally to the shortest direction to a minimum point. 

differentiable functions, gradient methods are ill-
problems and especially for 

bundle methods of descent 
descent methods, like sub gradient 

SYSTEM 

Gradient descent can be used to solve a system of linear 
equations, reformulated as a quadratic minimization 

. Solution of 

in the sense of linear least squares is defined as minimizing 

∥( 
least squares for real A and the 

is real, square, symmetric and positive 
, a different popular choice of the norm is  

which produces a different equation with a better condition 

w ¤� 
minimization, finding the 

on every iteration, can be 
performed analytically, and explicit known.	
Gradient descent can also be used to solve a system of 
nonlinear equations. Below is an example that shows how to 
use the gradient descent to solve for three unknown 

. This example shows one iteration of 

 

� 32 � 0 w 1 � 0 

 

� w 32 �( w 1 10Í w 33  

���0��� 

� 12 Îg3�� w cos��(��� w
G �4��(

+gTÅ�$�w���(� G 20�� G �nÌ£�
With initial guess: 

��n� � ����(��� � �000�. 
We know that: ���� � ��
Where: �Ã���n�� � Ï
The Jacobian matrix  ÏÐ���n�� 
¯ 3														 sin��(��� �� 													8�� 																		w 1250�( G 2	w�( exp�w���(� 								w ��exp
Then evaluating these terms at  

ÏÐ���n�� � �3		00	
and 

0���n�� �
So that ���� � ��
and    ���� � ��n� w Án � w7.5w2209.44

 Ã���n�� � 0.5�w2.5�(58.456 

An animation showing the first 83 iterations of gradient 
decent applied to this example. Surfaces are Ã����at current guess��, and arrows show the direction of 
descent. Due to a small and constant step size, the 
convergence is slow. 
Now a suitable γ0 must be found such Ã���n��. This can be done with any of a variety of 
search algorithms. One might also simply guess 
which gives 
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� w 32i
(

� w 625�(( G 2�( w 1�(i 
£�U(i	 . 

�
�n� w Án½Ã���n�� 

� ÏÐ���n��� ∗ 0���n�� 
ÏÐ 		� 																sin��(��� �(																																				0exp	�w���(�															20			°  

 								0									00						2					0					0					20			 � 
� � w2.5w110.472� 

�n� w Án�Ã���n�� 
44� ( G �w1�( G �10.472�( �

 

An animation showing the first 83 iterations of gradient 
decent applied to this example. Surfaces are isosurfaces of 

, and arrows show the direction of 
descent. Due to a small and constant step size, the 

must be found such thatÃ������ 8
. This can be done with any of a variety of line 
algorithms. One might also simply guess γ0 = 0.001 
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���� � � 0.00750.002−0.20944� 
evaluating at this value, 

Ã������ = 0.5��−2.48�( + �−1.00�( + �6.28�(�= 23.306 

The decrease from Ã���n�� = 58.456to the next step's value 

of Ã������ = 23.306	is a sizable decrease in the objective 
function. Further steps would reduce its value until a 
solution to the system was found. 

VI.  COMMENTS  
Gradient descent works in spaces of any number of 
dimensions, even in infinite-dimensional ones. In the latter 
case the search space is typically a function space, and one 
calculates the Gateaux derivative of the functional to be 
minimized to determine the descent direction.  
The gradient descent can take many iterations to compute a 
local minimum with a required accuracy, if the curvature in 
different directions is very different for the given function. 
For such functions, preconditioning, which changes the 
geometry of the space to shape the function level sets like 
concentric circles, cures the slow convergence. Constructing 
and applying preconditioning can be computationally 
expensive, however. 
The gradient descent can be combined with a line search, 
finding the locally optimal step size γ on every iteration. 
Performing the line search can be time-consuming. 
Conversely, using a fixed small γ can yield poor 
convergence. 
Methods based on Newton's method and inversion of the 
Hessian using conjugate gradient techniques can be better 
alternatives.[3] Generally, such methods converge in fewer 
iterations, but the cost of each iteration is higher. An 
example is the BFGS method which consists in calculating 
on every step a matrix by which the gradient vector is 
multiplied to go into a "better" direction, combined with a 
more sophisticated line search algorithm, to find the "best" 
value of γ. For extremely large problems, where the 
computer memory issues dominate, a limited-memory 
method such as L-BFGS should be used instead of BFGS or 
the steepest descent. 
Gradient descent can be viewed as Euler's method for 
solving ordinary differential equations � ,�Ò� = ∇����Ò��of a 
gradient flowThe gradient descent algorithm is applied to 
find a local minimum of the function f(x)=x4−3x3+2, with 
derivative f'(x)=4x3−9x2. Here is an implementation in the 
Python scripting language. 

Davidon- Fletcher  and Powel method Tested On 
Quadratic Functions: 

Introduction:     

These methods are the best general purpose unconstrained 

optimization techniques making use of the derivatives , that 

is carefully available ,at the iterative procedure of this 

method can be shown in the following algorithm: 

1) Start with an initial point ����	and an (H × H� 
positive definite symmetric matrix '��� is taken as 

the identity matrix I . Set iteration number as i=1 

2) Compute the gradient of the function  ∇	��:�   at the 

point ��:� and set $�:� = −'�:���:�                                 
(1) 

(for the first iteration the search direction $��� = −���� 
3) Find the optimal step length 9∗�:� =1 in the 

direction $�:� and set  

��:��� = ��:� + 9∗�:�$�:�                                    (2) 

9∗�:�$�:� = ��:��� − ��:�                                    (3) 

Ô�:� = ��:��� − ��:�                                            (4) 

4) Test the new point ��:��� for optimality . If  ��:��� 
is optimal terminate the iterative process 
.Otherwise go to step (5). 

5) Update the Hessian matrix as : 

'�:��� = '�:� +Õ�:� +Ö�:�           (5) 

where           Õ�:� =	 ×∗�_�Ø�_�Ø�_�xØ�_�xÙ�_�                            (6) 

Ö�:�=− TÚ�_�Ù�_�U�Ú�_�Ù�_��xÙ�_�xÚ�_�Ù�_�                                        (7) 

The  following example describes the steps of the 
procedure  

Example (1): 

min�∈ℜ, ������, ��(�� = ���� − ��(� + 2����, + 2������(�+ ��(�, 
With initial point  ���� = {00| 

Solution : 

are Known as inverse update formulas slice the inverse of 
the of f.  
The DFP and the BFGS[1] formulas belong to a family of 
rank 2 updates known as Huang's family of updates which 
can be expressed for updating the inverse of the' 
DAVIDON- FLETCHER and POWELL METHOD . u¸���v = Û��u¸�v − u¸�v���Â�u¸�v�Â�u¸�v�� + Ü�Ý�ÝÂ� + Þ�ÞÂ�ÞÂ���)      
,where 

Ý� = ��Â�u¸�v������ Þ�ÞÂ��� − u¸�v���Â�u¸�v�� 
�: 	and		s:are constant parameters, 

It has beer, shown that Eq. maintains the symmetry and 
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positive definiteness of ][][ 1 ii BifB + is symmetric 

and positive definite. Different choices of		�: 	and		s: in Eq. 
lead to different Algren algorithms. For example, when �: = 1	Hb		s: = 1 Eq. yields the BFGS formula, [9]. 
Example (2): 

Show that the DFP method is a conjugate method. 

Solution:  consider the quadratic function 

���� = �( ��%� + à�� + &                (1) 

For which the gradient is given by 

∇� = %� + ¤                                      (2) 

�: = ∇�:�� − ∇�: = %��:�� − �:�    (3) 

Since: 

�:�� = �: − 9∗q:                                          (4) 

Equation (3) becomes: 

�: = 9∗C	%q:                                               (5) 

Pre -multiplication of Eq. (5) by [Bi+1] leads to : 

uà:��vu%vq: = �×∗ uà:v + uÕ:v + uÖ:v�:          (6) 

Eq. (4) and (5) yield: 

ii
i

T
i

i
T
ii

ii S
gS

gSS
gM *][ λ==           (7) 

Eq .(6) can be used to obtain :

( )( )
)8.........(..........][

][

][][
][ 1gB

gBg

gBggB
gN i

ii
T
i

i
T

i
T
iii

ii −==  

Since [Bi] is symmetric . By subsisting Eqs (7) and (8) into. (6), we obtain: 

( ) )9......(..........][][
1

]][[ *
1*1 iiiiii

i
ii SgBSgBSAB =−+=+ λ

λ  

The quantity  i
T
i SAS ][1+  can be written as: 

( )
)10..(..............................0]][[

][][][

111

11

=−∇=−∇=

∇−=+

+++

++

i
T

iii
T

i

i
T

iii
T
i

SfSABf

SAfBSAS
 

Since 
*
iλ is the minimizing step in the direction Si. 

Equation (10) proves that the successive directions generated 
in the DFP method are conjugate and hence the method is 
conjugate gradient method. 
Section(4): 
Implementation of the Davidon –Fletcher –Powel 
method: 

In this section we write a Matlab program and test it on 
some quadratic problems. 
Applications and Results: 

1) min�∈ℜ, ���� = ���� − ��(� + ����, + 2������(� +��(�,��n� = {00| 
Iteration no.0 

alpha =  1.0000 

f =     -1.00000 

���� = {−1.0001.000 | 
������� = {−1.0001.000 | 
Iteration no.1 

Alpha = 0.5000   f = -1.25000 �∗ = ���� = {−1.0001.5000| 
���∗� = {0.0000.000|	

2) min�áℜ, ���� = 2����, + ��(�, 	��n� = { 10.5| 
Iteration no.0 

Alpha = 0.2576  f = 0.060606 

���� = {−0.03031.2424 | ������� = {−0.12120.4848 | 
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alpha = 0.4924 f = 0.0000 

�∗ = ��(� = {0.00000.0000| ����(�� = {0.00000.0000| 
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