International Journal of Basic Sciences and Applied Computing
Exploring Innovation| ISSN:2394-367X(Online)| Published by BEIESP| Impact Factor:2.98
Home
Aims and Scope
Instructions for Authors
Call for Papers
Editorial Board
Archive
Conferences
Fee
Download
Ethics & Policies
FAQ
Contact
Volume-1 Issue-6: Published on May 20, 2015
09
Volume-1 Issue-6: Published on May 20, 2015
 Download Abstract Book
                                                                                                                                                                                                                                                                                                                                                            

S. No

Volume-1 Issue-6, May 2015, ISSN: 2394-367X (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd. 

Page No.

1.

Authors:

Mariya Negreva, Krasimira Prodanova, Katerina Vitlianova, Albena Alexandrova

Paper Title:

Prognostic Capacity of Oxidative Biomarkers in Paroxysmal Atrial Fibrillation

Abstract:  Background: In our previous studies on the oxidative status of patients with paroxysmal atrial fibrillation (PAF) we found eight oxidative biomarkers - plasma malondialdehyde (Pl-MDA), erythrocyte malondialdehyde (Er-MDA), plasma glutathione (Pl-GSH), erythrocyte glutathione (Er-GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glucose-6-phosphate dehydrogenase (Glu-6-PhD) - that changed significantly still in the first twenty-four hours of the arrhythmia clinical presentation. It is exactly their early changes that suggest a correlation of these biomarkers with the trigger mechanisms of the rhythm disorder which then raise the question of how efficiently they can predict PAF occurrence. Aim: To analyse the changes in these oxidative biomarkers as predictive for PAF development. Place and duration of study: The participants were recruited in 1st Cardiology Clinic of St Marina University Hospital, Varna, Bulgaria, between October 2010 and May 2012. Patients and methods: The oxidative indicators were measured in 51 patients (26 men; mean age 59.84 ± 1.60) and 52 controls (26 men; mean age 59.50 ± 1.46) matched in age, sex, concomitant diseases, harmful habits and body mass index. Blood samples were collected once. A dichotomous logistic regression analysis was performed to identify the oxidative biomarkers (explanatory variables) independently associated with PAF appearance. Eight logistic models with a single explanatory variable were considered to find statistically significant predictors for PAF. A multiple logistic model was used to assess simultaneously the predictive value of all statistically significant explanatory variables. Results: The logistic regression models with a single explanatory variable showed that six of the eight indicators were associated with PAF development: Pl-MDA (P=0.03), Er-MDA (P<0.001), Pl-GSH (P< 0.001), SOD (P< 0.001), CAT (P< 0.001), GSH-Px (P< 0.001). The multiple logistic model using all six explanatory variables confirmed the results (P=0.006). Constructed models were used to obtain adjusted estimate of odds and a prediction success matrix. It was found that the multiple logistic model could measure the PAF probability using values of these six markers. Conclusion: Pl-MDA, Er-MDA, Pl-GSH, SOD, CAT and GSH-Px were found to be oxidative biomarkers with predictive value for PAF occurrence. In clinical practice for each measured value of these biomarkers, the probability of the arrhythmia manifestation could be calculated.

Keywords: 
 atrial fibrillation, oxidative markers, prediction, occurrence.


References:

1.       Nalejska E, Mączyńska E, Lewandowska MA. Prognostic and predictive biomarkers: tools in personalized oncology. Mol Diagn Ther. 2014;18(3):273-84. doi: 10.1007/s40291-013-0077-9.
2.       Spitzer P, Klafki HW, Blennow K, Buée L, Esselmann H, Herruka SK et al. cNEUPRO: Novel Biomarkers for Neurodegenerative Diseases. Int J Alzheimers Dis. 2010 Sep 19;2010. pii: 548145. doi: 10.4061/2010/548145.

3.           Huo AP, Lin KC, Chou CT. Predictive and prognostic value of  antinuclear antibodies and rheumatoid factor in primary Sjogren's syndrome. Int J Rheum Dis. 2010;13(1):39-47. doi: 10.1111/j.1756-185X.2009.01444.x.

4.       Lip GY, Kakar P, Watson T. Atrial fibrillation – the growing epidemic. Heart. 2007;93(5):542-43. PMID: 17435064.

5.           Levy S, Maarek M, Coumel P, Guize L, Lekieffre J, Medvedowsky JL et al. Characterisation of different subsets of atrial fibrillation in general practice in France: the ALFA study. Circulation. 1999;99(23):3028–35. doi: 10.1161/01.CIR.99.23.3028. PMID: 10368121.

6.           Neuman RB, Bloom HL, Shukrullah I, Darrow LA, Kleinbaum D, Jones DP, et al. Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem. 2007; 53(9):1652-57. doi: 10.1373/clinchem.2006.083923. PMID: 17599958.

7.           Kim YM, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B. Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. J Am Coll Cardiol. 2008;51(1):68-74. doi: 10.1016/j.jacc.2007.07.085. PMID: 18174039.

8.           Leftheriotis DI, Fountoulaki KT, Flevari PG, Parissis JT, Panou FK, Andreadou IT et al. The predictive value of inflammatory and oxidative markers following the successful cardioversion of persistent lone atrial fibrillation. Int J Cardiol. 2009;135(3):361-69. doi: 10.1016/j.ijcard.2008.04.012. PMID: 18640731.

9.           Wu Y, Zhang K, Zhao L, Guo J, Hu X, Chen Z. Increased serum HMGB1 is related to oxidative stress in patients with atrial fibrillation. J Int Med Res. 2013;41(6):1796-802. doi: 10.1177/0300060513503917. PMID: 24265331.

10.         Negreva MN, Penev AP, Georgiev SJ, Alexandrova AA. Changes in Glucose-6-phosphate Dehydrogenase Activity in Paroxysmal Atrial Fibrillation. J Cardiobiol. 2014;2(1):5.

11.         Negreva MN, Georgiev SJ, Penev AP, Alexandrova AA. Dynamics of oxidative status in patients with paroxysmal atrial fibrillation. Scripta Scientifica Medica. 2014;46(3);33-41. doi: http://dx.doi.org/10.14748/ssm.v46i3.764. 

12.         Negreva MN, Penev AP, Georgiev SJ, Alexandrova AA. Paroxysmal atrial fibrillation: dymanics of the main antioxidant enzymes – superoxide dismutase and catalase. Folia Medica. 2014;56(2): 96-101. PMID: 25181846. 

13.         Bellandi F, Cantini F, Pedone T, Palchetti R, Bamoshmoosh M, Dabizzi RP. Effectiveness of intravenous propafenone for conversion of recent-onset atrial fibrillation: a placebo-controlled study. Clin Cardiol 1995; 18: 631-634.
14.         World Medical Association Declaration of Helsinki (2008) Ethical principles for medical research involving human subjects. 59th WMA General Assembly. Seoul.
15.         Jobson JD. Applied Multivariate Data Analysis. Berlin: Springer Verlag; 1991; 278-303.

16.         STATISTICA, Statistical Analysis Software, version 10.0, StatSoft Inc. 2010.

17.         Aksnes TA, Schmieder RE, Kjeldsen SE, Ghani S, Hua TA, Julius S. Impact of new-onset diabetes mellitus on development of atrial fibrillation and heart failure in high-risk hypertension (from the VALUE Trial). Am J Cardiol. 2008;101(5):634-38. doi: 10.1016/j.amjcard.2007.10.025. PMID: 18308012.

18.         Lin YK, Chen YJ, Chen SA. Potential atrial arrhythmogenicity of adipocytes: implications for the genesis of atrial fibrillation. Med Hypotheses. 2010;74(6):1026-29. doi: 10.1016/j.mehy.2010.01.004. PMID: 20149554.

19.         Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15:316e328.

20.         Lykkesfeldt J. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta. 2007;380(1-2):50-58.

21.         Shilpa HD, Bijoor AR. Malondialdehyde as a marker of lipid peroxidation in acute myocardial infarction patients. J Health Sci. 2013;1(1):20-22.

22.         Lushchak VI. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. J Amino Acids. 2012; 2012;736837. doi:  10.1155/2012/736837.

23.         Haayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a coordinately regulated defence against oxidative stress. Free Radic Res. 1999; 31(4):273-300.

24.         Zocche SH, Canes SL, Debbas V, Martins Laurindo FR. Cellular prion protein (PrP(C)) and superoxide dismutase (SOD) in vascular cells under oxidative stress. Exp Toxicol Pathol 2011;63(3):229-36. doi: 10.1016/j.etp.2009.12.004. 

25.         Mak JC, Ho SP, Yu WC, Choo KL, Chu CM, Yew WW et al. Polymorphisms and functional activity in superoxide dismutase and catalase genes in smokers with COPD. Eur Respir J 2007;30(4):684-90. PMID: 17567676.

26.         Gonzalez-Pinto A, Martinez-Cengotitabengoa M, Arango C, Baeza I, Otero-Cuesta S, Graell-Berna M et al. Antioxidant defense system and family environment in adolescents with family history of psychosis. BMC Psychiatry 2012;12:200. doi: 10.1186/1471-244X-12-200.

27.         Dawn I, Naskar S, Sarkar S, Biswas G, Halder S. A comparative study between synovial superoxide dismutase per oxidation marker and the severity of knee osteoarthritis. Int J Pharm Sci Invent 2013;2(1):01-04.


1-5

www.blueeyesintelligence.org/attachments/File/fee/2checkout_download.html

2.

Authors:

Seth Okyere Dankwa, Daparti Subba Rao

Paper Title:

Expedite Flow Completion on High Speed Network Through Protocols

Abstract:  It has been proved by a lot of researchers that the present operation of TCP which is the main internet control protocol will suffer poor performance in future high speed networks. It has also been established that performance issues are very crucial in computer networks, for example when many computers are interconnected, complex interactions arise with unforeseen consequences. This complexity leads to degradation of performance if the system is not managed properly. Yet research on congestion control focuses almost entirely on maximizing link throughput, utilization and fairness, which matter more to the operator than the user. To arrest the situation, various factors which affect network performance were examined. Characteristics of congestion Control Protocols were described. Congestion Control Protocols like Transmission Control Protocol (TCP) and Explicit Congestion Protocol (XCP) were evaluated. The proposed congestion control protocol, Rate Congestion Protocol (RCP) was also evaluated. Then NS2 simulator was used under different scenarios to evaluate the performance of RCP and the aforementioned protocols to prove that RCP outperforms them in terms of expediting flows.

Keywords: 
Rate Control Protocol (RCP); Explicit Control Protocol (XCP); Processor Sharing (PS); Network Simulator 2(NS2); Transmission Control Protocol (TCP).


References:

1.       Alizadeh M, Greenberg A, Maltz D, Padhye J, Patel P, Prabhakar B, Sengupta S, and Sridharan M.(2010) DCTCP: Efficient Packet Transport for the Commoditized Data Center. In ACM SIGCOMM.
2.       Andrew L., Floyd S., and Gang W. (2008) Common TCP Evaluation Suite. In Internet draft (work in progress), http://netlab.caltech.edu/lachlan/abstract/draft-irtf-tmrg-tests-00.html.

3.       Apoorva J. and Konstantinos P. (2008) Achievable Rate Region of Wireless Multi-hop

4.       Networks with 802.11 Scheduling. IEEE Transactions on Networking.
5.       Balakrishnan H., Dukkipati N., McKeown N., Tomlin C (2007). “Stability Analayis of ExplicitCongestion Control Protocols,” IEEE Communications Letters.
6.       Falk A.,KatabiD. and PryadkinY. (2007) "Specification for the Explicit Control Protocol (XCP)", draft-falk-xcp-03.txt (work in progress).

7.       Floyd S. (2003).“HighSpeed TCP for Large Congestion Windows,”RFC 3649,http://www.icir.org/floyd/hstcp.html, December 2003.5, 9, 23, 52

8.       Floyd S. and Jacobson V. (1993), "Random early detection gateways for congestion avoidance" ACM Transactions on Networking, vol. 1, pp. 397-413 

9.       Fulton, C., Li, S. and Lim, C.S. (1997). An ABR feedback control scheme with tracking, in: Proc. IEEE INFOCOM’97, vol. 2, pp. 805–814.

10.     Gupta P. (1996), "Scheduling in Input Queued Switches: A Survey" unpublished manuscript. 

11.     Ha S. and Rhee I. (2008). Hybrid Slow Start for High-Bandwidth and Long-DistanceNetworks. In PFLDnet.

12.     Hashem E. (1989), "Analysis of random drop for gateway congestion control" Laboratory for Computer Science, MIT, Cambridge MA LCS TR-465, 

13.     Hollot C., Misra V., Towsley D., and Gong W.(2002). Analysis and Design of Controllers for AQM Routers Supporting TCP Flows. In IEEE/ACM Trans. Automatic Control, 47(6):945-959, 

14.     Jacobson V. (1998), "Congestion Avoidance and Control" ACM Computer Communication Review; Proceedings of the Sigcomm '88 Symposium in Stanford, CA, August, 1988, vol. 18, pp. 314-329. 

15.     Kapoor A., Falk A., Faber T., PryadkinY. (2005), "Achieving Faster Access to Satellite Link Bandwidth", 8th IEEE Global Internet Symposium, Miami, FL.

16.     Karnik, A. and  Kumar, A. (2005). Performance of TCP congestion control with explicit rate feedback, IEEE/ACM Trans. Networking 13 (1) 108–120.

17.     Katabi D., Handley M., Rohrs C.(2002). “Internet Congestion Control for High Bandwidth-Delay Product Networks,” Proceedings of ACM Sigcomm2002 , Pittsburgh, August,2002. 5, 11, 18, 47

18.     Kelly F., Raina G., and Voice T. (2008) "Stability and Fairness of Explicit Congestion Control with Small Buffers" ACM SIGCOMM Computer Communication Review

19.     Lakshman T. and Madhow U.(1997). The performance of TCP/IP for networks with highbandwidth-delay products and random loss. In IEEE/ACM Trans. Networking, 5(3):336-350.

20.     Legout, A., Biersack, E.W. (2002). Revisiting the Fair Queuing Paradigm for End-to- End Congestion Control. IEEE Network. 16 (5), pp. 38-46. 

21.     Li, Y., Leith, D. J. and Shorten, R. (2005). Experimental evaluation of tcp protocols for high-speed networks. Technical Report HI, Hamilton Institute.

22.     Low S. (2000), "A Duality Model of TCP and Queue Management Algorithms" Proceedings of ITC Specialist Seminar on IP Traffic Measurement, Modeling and Management, Monterey, CA. 

23.     Mathis M., Mahdavi J., Floyd S., and Romanow A. (1996), "TCP Selective Acknowledgement Options." IETF RFC 2018. 

24.     May M., Bolot J., Diot C., and Lyles B. (1999), "Reasons Not to Deploy RED" Proceedings of 7th. International Workshop on Quality of Service IWQoS'99, . pp. 260-262. 

25.     May M., Bonald T., and Bolot J.-C. (2000), "Analytic Evaluation of RED Performance" Proceedings of INFOCOM, 2000. pp. 1415-1424. 

26.     Micah Z. Brodsky and Morris T. (2009) In defense of wireless carrier sense. Proceedings of the ACM SIGCOMM 2009 conference on Data communication, pages 147–158, New York, NY, USA, ACM.

27.     Nagle J. (1984), "Congestion Control in IP/TCP Internetworks" DDN Network Information Center, Menlo Park, CA RFC-896. 

28.     Nyberg E., Aalto S., and Virtamo J. (2001), "Relating Flow Level Requirements to DiffServ Packet Level Mechanisms" Helisinki University of Technology,Heliskini COST279 TD(01)04. 

29.     Pearl, J. (2009) Causal inference in statistics.Protocols for Next-Generation Networks. 

30.     Paganini, F., Wan, Z., Doyle, J.C. and Low, S.H. (2005). Congestion control for high performance stability and fairness in general networks, IEEE/ACM Trans. Networking 13 (1) 43–56.

31.     Qazi I. and Znati.T. (2008). On the Design of Load Factor based Congestion ControlReliability. 

32.     Shorten N. and Leith J. (2007) On queue provisioning, network efficiency and the transmission control protocol. IEEE/ACM Trans. Netw., 15(4):866–877, 

33.     Srikant, R. Altman, E. and Basar, T. (1998). Robust rate control for ABR sources, in: Proc. IEEE INFOCOM’98, vol. 1, pp. 166–173.

34.     Stevens W. (1997), "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms." IETF RFC2001. 

35.     Stevens W. (1997), TCP/IP Illustrated, Vol.1 The Protocols, 10 ed: Addison-Wesley, 

36.     Subramanian, M. (2000) Network Management Principles and Practice. New York: Addison-Isley.

37.     Tanenbaum, A. S. (2003) Computer Networks. Fourth Edition. New Jersey: Prentice Hall PTR.


6-10

www.blueeyesintelligence.org/attachments/File/fee/2checkout_download.html

3.

Authors:

Seth Okyere Dankwa, Daparti Subba Rao

Paper Title:

Use of Network Performance Management Tools to Increase Productivity

Abstract:  Research has shown that there is a substantial lost in productivity anytime the performance of computer network becomes suspect. The resultant financial effect of supplementary bandwidth investment presents a daunting picture. Performance issues are very crucial in computer networks, for example when many computers are interconnected, complex interactions arise with unforeseen consequences. This complexity leads to degradation of performance if the system is not managed properly. The research explores the use of performance management aspect of the network management to maximize efficiency and productivity in computer network. It also tries to find out the features of performance management, examines current solutions to performance management features, investigate about techniques adopted to achieve quality of service and then attempts to recommend an appropriate performance approach to a medium sized company. The research is expected to reveal that performance management concept is one of the most efficient and effective network management approaches which ensures automated and preventive maintenance, thus relieving the network managers of doing manual investigation to find out many problems that the network might create. The research outcome enhances network availability to users, remote and automated monitoring to network administrators and then increase productivity to cooperate bodies.    

Keywords: 
 Throughput, Response Time, Availability, Protocol Analyzer, Multi Router Traffic Grapher (MRTG).


References:

1.       Alizadeh M, Greenberg A, Maltz D, Padhye J, Patel P, Prabhakar B, Sengupta S, and Sridharan M.(2010) DCTCP: Efficient Packet Transport for the Commoditized Data Center. In ACM SIGCOMM.
2.       Andrew L., Floyd S., and Gang W. (2008) Common TCP Evaluation Suite. In Internet draft (work in progress), http://netlab.caltech.edu/lachlan/abstract/draft-irtf-tmrg-tests-00.html.

3.       Apoorva J. and Konstantinos P. (2008) Achievable Rate Region of Wireless Multi-hop Networks with 802.11 Scheduling. IEEE Transactions on Networking.

4.       Balakrishnan H., Dukkipati N., McKeown N., Tomlin C (2007). “Stability Analayis of ExplicitCongestion Control Protocols,” IEEE Communications Letters.

5.       Falk A.,KatabiD. and PryadkinY. (2007) "Specification for the Explicit Control Protocol (XCP)", draft-falk-xcp-03.txt (work in progress).

6.       Feldmier, J. (1997) Network Traffic Management. Unix Review

7.       Floyd S. (2003).“HighSpeed TCP for Large Congestion Windows,”RFC 3649,http://www.icir.org/floyd/hstcp.html, December 2003.5, 9, 23, 52

8.       Floyd S. and Jacobson V. (1993), "Random early detection gateways for congestion avoidance" ACM Transactions on Networking, vol. 1, pp. 397-413 

9.       Leinwand, A. and Conroy K. F. (1996) Network Management. A Practical Perspective. Second Edition. New York: Addison- Wesley.

10.     Mikalsen, A. and Borgesen, P. (2002) Local Area Network Management, Design and Security. A Practical Approach. New York: John Wiley. 

11.     Oetiker, T. and Rand, D. (1997) Multi Router Traffic Grapher. http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html

12.     Subramanian, M.  (2000) Network Management Principles and Practice. New York: Addison-Wesley.

13.     Tanenbaum, A. S. (2003)  Computer


11-16

www.blueeyesintelligence.org/attachments/File/fee/2checkout_download.html